bibtype J - Journal Article
ARLID 0381969
utime 20240103201350.9
mtime 20121029235959.9
WOS 000309289900019
DOI 10.3934/dcds.2013.33.819
title (primary) (eng) Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space
specification
page_count 21 s.
serial
ARLID cav_un_epca*0255898
ISSN 1078-0947
title Discrete and Continuous Dynamical Systems
volume_id 33
volume 2 (2013)
page_num 819-835
publisher
name AIMS Press
keyword Partial differential equations with delays
keyword well-posedness
keyword metric space
author (primary)
ARLID cav_un_auth*0282033
name1 Rezunenko
name2 Oleksandr
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101234
name1 Zagalak
name2 Petr
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/AS/zagalak-0381969.pdf
cas_special
project
project_id GAP103/12/2431
agency GA ČR
country CZ
ARLID cav_un_auth*0284932
abstract (eng) Partial differential equations with discrete (concentrated) state-dependent delays are studied. The existence and uniqueness of solutions with initial data from a wider linear space is proven first and then a subset of the space of continuously differentiable (with respect to an appropriate norm) functions is used to construct a dynamical system. This subset is an analogue of the solution manifold proposed for ordinary equations in [H.-O. Walther, The solution manifold and C 1-smoothness for differential equations with state- dependent delay, J. Differential Equations, 195(1), (2003) 46–65]. The exis- tence of a compact global attractor is proven. As applications, we consider the well known Mackey-Glass-type equations with diffusion, the Lasota-Wazewska- Czyzewska model, and the delayed diffusive Nicholson’s blowflies equation, all with state-dependent delays.
reportyear 2013
RIV BC
mrcbC52 4 A 4a 20231122135241.3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0212323
mrcbT16-e MATHEMATICS|MATHEMATICSAPPLIED
mrcbT16-f 1.076
mrcbT16-g 0.280
mrcbT16-h 5.0
mrcbT16-i 0.01767
mrcbT16-j 1.059
mrcbT16-k 2048
mrcbT16-l 357
mrcbT16-s 1.375
mrcbT16-z ScienceCitationIndex
mrcbT16-4 Q1
mrcbT16-B 82.469
mrcbT16-C 73.246
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2013
mrcbTft \nSoubory v repozitáři: zagalak-0381969.pdf
mrcbU34 000309289900019 WOS
mrcbU63 cav_un_epca*0255898 Discrete and Continuous Dynamical Systems 1078-0947 1553-5231 Roč. 33 č. 2 2013 819 835 AIMS Press