bibtype J - Journal Article
ARLID 0382169
utime 20240103201403.8
mtime 20121031235959.9
WOS 000309129000003
SCOPUS 84867000151
DOI 10.1080/00207721.2012.687787
title (primary) (eng) A method for determining the non-existence of a common quadratic Lyapunov function for switched linear systems based on particle swarm optimisation
specification
page_count 15 s.
serial
ARLID cav_un_epca*0256821
ISSN 0020-7721
title International Journal of Systems Science
volume_id 43
volume 11 (2012)
page_num 2015-2029
publisher
name Taylor & Francis
keyword Switched linear systems
keyword Lyapunov function
keyword particle swarm optimization
author (primary)
ARLID cav_un_auth*0253278
name1 Duarte-Mermoud
name2 M.A.
country CL
author
ARLID cav_un_auth*0284618
name1 Ordonez-Hurtado
name2 R.H.
country CL
author
ARLID cav_un_auth*0101234
name1 Zagalak
name2 Petr
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/AS/zagalak-0382169.pdf
cas_special
project
project_id GAP103/12/2431
agency GA ČR
country CZ
ARLID cav_un_auth*0284932
abstract (eng) The existence of a common quadratic Lyapunov function (CQLF) for a switched linear system guarantees its global asymptotic stability. Even if progress in finding the conditions for the existence/non-existence of a CQLF is significant, especially in switched linear systems consisting of N second-order systems or two systems of order n, the general case of N systems of order n still remains open. In this article, a sufficient condition for the non- existence of a CQLF for N systems of order n is derived. Based on the condition, a new method for determining the non-existence of a CQLF, using particle swarm optimisation, was designed and is described. Examples illustrating the proposed method are introduced at the end of this article.
reportyear 2013
RIV BC
num_of_auth 3
mrcbC52 4 A 4a 20231122135245.5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0212468
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|COMPUTERSCIENCETHEORYMETHODS|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-f 1.504
mrcbT16-g 0.246
mrcbT16-h 6.5
mrcbT16-i 0.00429
mrcbT16-j 0.411
mrcbT16-k 1996
mrcbT16-l 195
mrcbT16-s 0.840
mrcbT16-4 Q1
mrcbT16-B 28.145
mrcbT16-C 65.633
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2012
mrcbTft \nSoubory v repozitáři: zagalak-0382169.pdf
mrcbU14 84867000151 SCOPUS
mrcbU34 000309129000003 WOS
mrcbU63 cav_un_epca*0256821 International Journal of Systems Science 0020-7721 1464-5319 Roč. 43 č. 11 2012 2015 2029 Taylor & Francis