bibtype |
J -
Journal Article
|
ARLID |
0382310 |
utime |
20240103201412.8 |
mtime |
20121116235959.9 |
WOS |
000310992800004 |
DOI |
10.1007/s00211-012-0474-8 |
title
(primary) (eng) |
Finite element approximation for time-dependent diffusion with measure-valued source |
specification |
|
serial |
ARLID |
cav_un_epca*0257346 |
ISSN |
0029-599X |
title
|
Numerische Mathematik |
volume_id |
122 |
volume |
4 (2012) |
page_num |
709-723 |
|
keyword |
measure-valued source |
keyword |
diffusion equation |
author
(primary) |
ARLID |
cav_un_auth*0284719 |
name1 |
Seidman |
name2 |
T. |
country |
US |
|
author
|
ARLID |
cav_un_auth*0284720 |
name1 |
Gobbert |
name2 |
M. |
country |
US |
|
author
|
ARLID |
cav_un_auth*0284721 |
name1 |
Trott |
name2 |
D. |
country |
US |
|
author
|
ARLID |
cav_un_auth*0101142 |
name1 |
Kružík |
name2 |
Martin |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
IAA100750802 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0241214 |
|
abstract
(eng) |
The convergence of finite element methods for elliptic and parabolic partial differential equations is well-established if source terms are sufficiently smooth. Noting that finite element computation is easily implemented even when the source terms are measure-valued—for instance, modeling point sources by Dirac delta distributions—we prove new convergence order results in two and three dimensions both for elliptic and for parabolic equations with measures as source terms. These analytical results are confirmed by numerical tests using COMSOL Multiphysics. |
reportyear |
2013 |
RIV |
BA |
num_of_auth |
4 |
mrcbC55 |
BA |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0212567 |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-f |
1.668 |
mrcbT16-g |
0.316 |
mrcbT16-h |
>10.0 |
mrcbT16-i |
0.00886 |
mrcbT16-j |
1.409 |
mrcbT16-k |
4772 |
mrcbT16-l |
76 |
mrcbT16-s |
1.851 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
91.806 |
mrcbT16-C |
81.984 |
mrcbT16-D |
Q1* |
mrcbT16-E |
Q1 |
arlyear |
2012 |
mrcbU34 |
000310992800004 WOS |
mrcbU63 |
cav_un_epca*0257346 Numerische Mathematik 0029-599X 0945-3245 Roč. 122 č. 4 2012 709 723 |
|