bibtype |
J -
Journal Article
|
ARLID |
0382596 |
utime |
20240103201431.4 |
mtime |
20121107235959.9 |
WOS |
000311461700004 |
SCOPUS |
84869095652 |
DOI |
10.1016/j.ijar.2012.04.001 |
title
(primary) (eng) |
Characteristic imsets for learning Bayesian network structure |
specification |
|
serial |
ARLID |
cav_un_epca*0256774 |
ISSN |
0888-613X |
title
|
International Journal of Approximate Reasoning |
volume_id |
53 |
volume |
9 (2012) |
page_num |
1336-1349 |
publisher |
|
|
keyword |
learning Bayesian network structure |
keyword |
essential graph |
keyword |
standard imset |
keyword |
characteristic imset |
keyword |
LP relaxation of a polytope |
author
(primary) |
ARLID |
cav_un_auth*0285215 |
name1 |
Hemmecke |
name2 |
R. |
country |
DE |
|
author
|
ARLID |
cav_un_auth*0285216 |
name1 |
Lindner |
name2 |
S. |
country |
DE |
|
author
|
ARLID |
cav_un_auth*0101202 |
name1 |
Studený |
name2 |
Milan |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
1M0572 |
agency |
GA MŠk |
country |
CZ |
ARLID |
cav_un_auth*0001814 |
|
project |
project_id |
GA201/08/0539 |
agency |
GA ČR |
ARLID |
cav_un_auth*0239648 |
|
abstract
(eng) |
In this paper we introduce a new unique vector representative, called the characteristic imset, obtained from the standard imset by an affine transformation. Characteristic imsets are (shown to be) zero-one vectors and have many elegant properties, suitable for intended application of linear/integer programming methods to learning BN structure. They are much closer to the graphical description; we describe a simple transition between the characteristic imset and the essential graph, known as a traditional unique graphical representative of the BN structure. In the end, we relate our proposal to other recent approaches which apply linear programming methods in probabilistic reasoning. |
reportyear |
2013 |
RIV |
BA |
num_of_auth |
3 |
mrcbC52 |
4 A 4a 20231122135256.4 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0212775 |
mrcbT16-e |
COMPUTERSCIENCEARTIFICIALINTELLIGENCE |
mrcbT16-f |
2.165 |
mrcbT16-g |
0.447 |
mrcbT16-h |
5.5 |
mrcbT16-i |
0.00618 |
mrcbT16-j |
0.745 |
mrcbT16-k |
1920 |
mrcbT16-l |
85 |
mrcbT16-s |
1.494 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
65.146 |
mrcbT16-C |
70.000 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q1 |
arlyear |
2012 |
mrcbTft |
\nSoubory v repozitáři: studeny-0382596.pdf |
mrcbU14 |
84869095652 SCOPUS |
mrcbU34 |
000311461700004 WOS |
mrcbU63 |
cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 53 č. 9 2012 1336 1349 Elsevier |
|