bibtype J - Journal Article
ARLID 0382596
utime 20240103201431.4
mtime 20121107235959.9
WOS 000311461700004
SCOPUS 84869095652
DOI 10.1016/j.ijar.2012.04.001
title (primary) (eng) Characteristic imsets for learning Bayesian network structure
specification
page_count 14 s.
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 53
volume 9 (2012)
page_num 1336-1349
publisher
name Elsevier
keyword learning Bayesian network structure
keyword essential graph
keyword standard imset
keyword characteristic imset
keyword LP relaxation of a polytope
author (primary)
ARLID cav_un_auth*0285215
name1 Hemmecke
name2 R.
country DE
author
ARLID cav_un_auth*0285216
name1 Lindner
name2 S.
country DE
author
ARLID cav_un_auth*0101202
name1 Studený
name2 Milan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/MTR/studeny-0382596.pdf
cas_special
project
project_id 1M0572
agency GA MŠk
country CZ
ARLID cav_un_auth*0001814
project
project_id GA201/08/0539
agency GA ČR
ARLID cav_un_auth*0239648
abstract (eng) In this paper we introduce a new unique vector representative, called the characteristic imset, obtained from the standard imset by an affine transformation. Characteristic imsets are (shown to be) zero-one vectors and have many elegant properties, suitable for intended application of linear/integer programming methods to learning BN structure. They are much closer to the graphical description; we describe a simple transition between the characteristic imset and the essential graph, known as a traditional unique graphical representative of the BN structure. In the end, we relate our proposal to other recent approaches which apply linear programming methods in probabilistic reasoning.
reportyear 2013
RIV BA
num_of_auth 3
mrcbC52 4 A 4a 20231122135256.4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0212775
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-f 2.165
mrcbT16-g 0.447
mrcbT16-h 5.5
mrcbT16-i 0.00618
mrcbT16-j 0.745
mrcbT16-k 1920
mrcbT16-l 85
mrcbT16-s 1.494
mrcbT16-4 Q1
mrcbT16-B 65.146
mrcbT16-C 70.000
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2012
mrcbTft \nSoubory v repozitáři: studeny-0382596.pdf
mrcbU14 84869095652 SCOPUS
mrcbU34 000311461700004 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 53 č. 9 2012 1336 1349 Elsevier