bibtype J - Journal Article
ARLID 0382623
utime 20240103201432.9
mtime 20121107235959.9
WOS 000312715000002
SCOPUS 84871789562
DOI 10.1007/s11045-011-0152-5
title (primary) (eng) Distributed stabilisation of spatially invariant systems: positive polynomial approach
specification
page_count 19 s.
serial
ARLID cav_un_epca*0257286
ISSN 0923-6082
title Multidimensional Systems and Signal Processing
volume_id 24
page_num 3-21
publisher
name Springer
keyword Multidimensional systems
keyword Algebraic approach
keyword Control design
keyword Positiveness
author (primary)
ARLID cav_un_auth*0213204
name1 Augusta
name2 Petr
full_dept (cz) Teorie řízení
full_dept (eng) Department of Control Theory
department (cz)
department (eng) TR
institution UTIA-B
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021097
name1 Hurák
name2 Z.
country CZ
source
url http://library.utia.cas.cz/separaty/2013/TR/augusta-0382623.pdf
url http://dx.doi.org/10.1007/s11045-011-0152-5
cas_special
project
project_id 1M0567
agency GA MŠk
country CZ
ARLID cav_un_auth*0202350
research CEZ:AV0Z10750506
abstract (eng) The paper gives a computationally feasible characterisation of spatially distributed controllers stabilising a linear spatially invariant system, that is, a system described by linear partial differential equations with coefficients independent on time and location. With one spatial and one temporal variable such a system can be modelled by a 2-D transfer function. Stabilising distributed feedback controllers are then parametrised as a solution to the Diophantine equation ax + by = c for a given stable bi-variate polynomial c. The paper is built on the relationship between stability of a 2-D polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are usually bilinear in the coefficients of the original polynomials. For low-order discrete-time systems it is shown that a linearising factorisation of the polynomial Schur-Cohn matrix exists. For higher order plants and/or controllers such factorisation is not possible as the solution set is non-convex and one has to resort to some relaxation. For continuous-time systems, an analogue factorisation of the polynomial Hermite-Fujiwara matrix is not known.
reportyear 2013
RIV BC
num_of_auth 2
mrcbC52 4 A 4a 20231122135256.9
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0212792
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 1.420
mrcbT16-g 0.400
mrcbT16-h 6.V
mrcbT16-i 0.00096
mrcbT16-j 0.512
mrcbT16-k 355
mrcbT16-l 35
mrcbT16-s 0.810
mrcbT16-z ScienceCitationIndex
mrcbT16-4 Q1
mrcbT16-B 46.217
mrcbT16-C 69.341
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2013
mrcbTft \nSoubory v repozitáři: augusta-0382623.pdf
mrcbU14 84871789562 SCOPUS
mrcbU34 000312715000002 WOS
mrcbU63 cav_un_epca*0257286 Multidimensional Systems and Signal Processing 0923-6082 1573-0824 Roč. 24 Č. 1 2013 3 21 Springer