bibtype J - Journal Article
ARLID 0384691
utime 20240103201649.7
mtime 20121210235959.9
WOS 000311675300006
SCOPUS 84870420886
DOI 10.1007/s10107-012-0553-8
title (primary) (eng) On regular coderivatives in parametric equilibria with non-unique multipliers
specification
page_count 21 s.
serial
ARLID cav_un_epca*0257227
ISSN 0025-5610
title Mathematical Programming
volume_id 136
volume 1 (2012)
page_num 111-131
publisher
name Springer
keyword Parameterized generalized equation
keyword Regular and limiting coderivative
keyword Constant rank CQ
keyword Mathematical program with equilibrium constraint
author (primary)
ARLID cav_un_auth*0015558
name1 Henrion
name2 R.
country DE
author
ARLID cav_un_auth*0101173
name1 Outrata
name2 Jiří
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0240271
name1 Surowiec
name2 T.
country DE
source
url http://library.utia.cas.cz/separaty/2012/MTR/outrata-0384691.pdf
cas_special
project
project_id IAA100750802
agency GA AV ČR
ARLID cav_un_auth*0241214
research CEZ:AV0Z10750506
abstract (eng) This paper deals with the computation of regular coderivatives of solution maps associated with a frequently arising class of generalized equations (GEs). The constraint sets are given by (not necessarily convex) inequalities, and we do not assume linear independence of gradients to active constraints. The achieved results enable us to state several versions of sharp necessary optimality conditions in optimization problems with equilibria governed by such GEs. The advantages are illustrated by means of examples.
reportyear 2013
RIV BA
num_of_auth 3
mrcbC52 4 A 4a 20231122135352.7
permalink http://hdl.handle.net/11104/0214254
mrcbT16-e COMPUTERSCIENCESOFTWAREENGINEERING|MATHEMATICSAPPLIED|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-f 2.351
mrcbT16-g 0.255
mrcbT16-h >10.0
mrcbT16-i 0.01403
mrcbT16-j 2.065
mrcbT16-k 5751
mrcbT16-l 106
mrcbT16-q 66
mrcbT16-s 2.750
mrcbT16-y 30.82
mrcbT16-x 2.5
mrcbT16-4 Q1
mrcbT16-B 98.011
mrcbT16-C 93.412
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2012
mrcbTft \nSoubory v repozitáři: outrata-0384691.pdf
mrcbU14 84870420886 SCOPUS
mrcbU34 000311675300006 WOS
mrcbU63 cav_un_epca*0257227 Mathematical Programming 0025-5610 1436-4646 Roč. 136 č. 1 2012 111 131 Springer