bibtype C - Conference Paper (international conference)
ARLID 0385357
utime 20240103201737.9
mtime 20121220235959.9
WOS 000316318400076
DOI 10.1109/DICTA.2012.6411740
title (primary) (eng) Fine Structure Recognition in Multichannel Observations
specification
page_count 7 s.
media_type P
serial
ARLID cav_un_epca*0385356
ISBN 978-1-4673-2180-8
title International Conference on Digital Image Computing Techniques and Applications (DICTA) 2012
page_num 1-7
publisher
place Piscataway
name IEEE Press
year 2012
keyword image restoration
keyword image recognition
author (primary)
ARLID cav_un_auth*0100099
name1 Šimberová
name2 Stanislava
full_dept (cz) Sluneční oddělení
full_dept (eng) Department of Solar Physics
institution ASU-R
full_dept Department of Solar Physics - Team 1
fullinstit Astronomický ústav AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101209
name1 Šroubek
name2 Filip
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/RO/haindl-fine structure recognition in multichannel observations.pdf
cas_special
project
project_id 409/2011
agency CESNET
country CZ
project
project_id GAP103/11/1552
agency GA ČR
ARLID cav_un_auth*0273618
project
project_id GA102/08/1593
agency GA ČR
ARLID cav_un_auth*0239572
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
abstract (eng) Two restoration methods applied to the multitemporal solar images are presented. Our main goal is to model and remove degradation in a subimage, where a specific event is investigated. Using information of the input (blurred) channels within a short observed sequence a new undegraded image is reconstructed. Degradation is assumed to follow a linear degradation model with an unknown possibly non-homogeneous point spread function (PSF) and additive noise. The first method ({/bf VAM}) is based on multichannel blind deconvolution (MBD) using a variational approach to blur estimation, while the second one ({/bf SAM}) supposes solution of the multidimensional causal regressive model representing the degraded image (channel). Experimental image data are from the ground based observation (white light) and satellite SOHO mission - EIT (EUV). Contributions of both suggested methods and their generalization are discussed.
action
ARLID cav_un_auth*0286770
name International Conference on Digital Image Computing Techniques and Applications (DICTA) 2012
place Fremantle
dates 03.12.2012-05.12.2012
country AU
reportyear 2013
RIV BD
num_of_auth 3
presentation_type PR
mrcbC55 ASU-R BN
inst_support RVO:67985556
inst_support RVO:67985815
permalink http://hdl.handle.net/11104/0007445
arlyear 2012
mrcbU34 000316318400076 WOS
mrcbU63 cav_un_epca*0385356 International Conference on Digital Image Computing Techniques and Applications (DICTA) 2012 978-1-4673-2180-8 1 7 Piscataway IEEE Press 2012