bibtype J - Journal Article
ARLID 0386229
utime 20240903170528.3
mtime 20130111235959.9
WOS 000312118700011
SCOPUS 84879199459
DOI 10.1214/11-AIHP431
title (primary) (eng) On conditional independence and log-convexity
specification
page_count 12 s.
serial
ARLID cav_un_epca*0250789
ISSN 0246-0203
title Annales de L Institut Henri Poincare-Probabilites Et Statistiques
volume_id 48
volume 4 (2012)
page_num 1137-1147
publisher
name Institute of Mathematical Statistics
keyword Conditional independence
keyword Markov properties
keyword factorizable distributions
keyword graphical Markov models
keyword log-convexity
keyword Gibbs-Markov equivalence
keyword Markov fields
keyword Gaussian distributions
keyword positive definite matrices
keyword covariance selection model
author (primary)
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/MTR/matus-0386229.pdf
cas_special
project
project_id IAA100750603
agency GA AV ČR
ARLID cav_un_auth*0216427
project
project_id GA201/08/0539
agency GA ČR
ARLID cav_un_auth*0239648
abstract (eng) If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley-Clifford theorem or Gibbs-Markov equivalence is obtained.
reportyear 2013
RIV BA
mrcbC52 4 A 4a 20231122135425.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0216169
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-f 0.979
mrcbT16-g 0.32
mrcbT16-h 7.9
mrcbT16-i 0.00536
mrcbT16-j 1.254
mrcbT16-k 623
mrcbT16-l 50
mrcbT16-q 24
mrcbT16-s 1.926
mrcbT16-y 29.36
mrcbT16-x 0.97
mrcbT16-4 Q1
mrcbT16-B 67.887
mrcbT16-C 50.855
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2012
mrcbTft \nSoubory v repozitáři: matus-0386229.pdf
mrcbU14 84879199459 SCOPUS
mrcbU34 000312118700011 WOS
mrcbU63 cav_un_epca*0250789 Annales de L Institut Henri Poincare-Probabilites Et Statistiques 0246-0203 Roč. 48 č. 4 2012 1137 1147 Institute of Mathematical Statistics