bibtype |
J -
Journal Article
|
ARLID |
0386229 |
utime |
20240903170528.3 |
mtime |
20130111235959.9 |
WOS |
000312118700011 |
SCOPUS |
84879199459 |
DOI |
10.1214/11-AIHP431 |
title
(primary) (eng) |
On conditional independence and log-convexity |
specification |
|
serial |
ARLID |
cav_un_epca*0250789 |
ISSN |
0246-0203 |
title
|
Annales de L Institut Henri Poincare-Probabilites Et Statistiques |
volume_id |
48 |
volume |
4 (2012) |
page_num |
1137-1147 |
publisher |
name |
Institute of Mathematical Statistics |
|
|
keyword |
Conditional independence |
keyword |
Markov properties |
keyword |
factorizable distributions |
keyword |
graphical Markov models |
keyword |
log-convexity |
keyword |
Gibbs-Markov equivalence |
keyword |
Markov fields |
keyword |
Gaussian distributions |
keyword |
positive definite matrices |
keyword |
covariance selection model |
author
(primary) |
ARLID |
cav_un_auth*0101161 |
name1 |
Matúš |
name2 |
František |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
IAA100750603 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0216427 |
|
project |
project_id |
GA201/08/0539 |
agency |
GA ČR |
ARLID |
cav_un_auth*0239648 |
|
abstract
(eng) |
If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley-Clifford theorem or Gibbs-Markov equivalence is obtained. |
reportyear |
2013 |
RIV |
BA |
mrcbC52 |
4 A 4a 20231122135425.1 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0216169 |
mrcbT16-e |
STATISTICSPROBABILITY |
mrcbT16-f |
0.979 |
mrcbT16-g |
0.32 |
mrcbT16-h |
7.9 |
mrcbT16-i |
0.00536 |
mrcbT16-j |
1.254 |
mrcbT16-k |
623 |
mrcbT16-l |
50 |
mrcbT16-q |
24 |
mrcbT16-s |
1.926 |
mrcbT16-y |
29.36 |
mrcbT16-x |
0.97 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
67.887 |
mrcbT16-C |
50.855 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q1 |
arlyear |
2012 |
mrcbTft |
\nSoubory v repozitáři: matus-0386229.pdf |
mrcbU14 |
84879199459 SCOPUS |
mrcbU34 |
000312118700011 WOS |
mrcbU63 |
cav_un_epca*0250789 Annales de L Institut Henri Poincare-Probabilites Et Statistiques 0246-0203 Roč. 48 č. 4 2012 1137 1147 Institute of Mathematical Statistics |
|