bibtype C - Conference Paper (international conference)
ARLID 0386540
utime 20240103201857.7
mtime 20130111235959.9
DOI 10.1109/PPRS.2012.6398320
title (primary) (eng) Remote Sensing Segmentation Benchmark
specification
page_count 4 s.
media_type P
serial
ARLID cav_un_epca*0386539
ISBN 978-1-4673-4960-4
title 2012 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)
page_num 1-4
publisher
place Piscataway, NJ
name IEEE Press
year 2012
keyword remote sensing
keyword segmentation
keyword benchmark
author (primary)
ARLID cav_un_auth*0101165
name1 Mikeš
name2 Stanislav
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216377
name1 Scarpa
name2 G.
country IT
source
url http://library.utia.cas.cz/separaty/2013/RO/mikes-remote sensing segmentation benchmark.pdf
cas_special
project
project_id 409/2011
agency CESNET
country CZ
project
project_id GAP103/11/0335
agency GA ČR
ARLID cav_un_auth*0273627
project
project_id GA102/08/0593
agency GA ČR
ARLID cav_un_auth*0239567
abstract (eng) In this work we present the enrichment of the Prague texture segmentation data-generator and benchmark (PTSDB) also for the assessment of the remote sensing image segmenters. The PTSDB tool is a web based ({/bf http://mosaic.utia.cas.cz}) service designed for real-time performance evaluation, mutual comparison, and ranking of various supervised or unsupervised static or dynamic image segmenters. PTSDB supports rapid verification and development of new segmentation approaches. The remote sensing datasets contain ten-spectral ALI satellite images and their RGB subsets, with optional additive noise resistance checking. Alternative setting options allow to test also scale, rotation or illumination invariance. The benchmark functionality is demonstrated by testing and comparing six remote sensing segmentation algorithms.
action
ARLID cav_un_auth*0287434
name IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)
place Tsukuba Science City
dates 11.11.2012
country JP
reportyear 2013
RIV BD
num_of_auth 3
presentation_type PR
permalink http://hdl.handle.net/11104/0216155
arlyear 2012
mrcbU63 cav_un_epca*0386539 2012 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS) 978-1-4673-4960-4 1 4 Piscataway, NJ IEEE Press 2012