bibtype |
J -
Journal Article
|
ARLID |
0387176 |
utime |
20240103201940.4 |
mtime |
20130207235959.9 |
title
(primary) (eng) |
On two flexible methods of 2-dimensional regression analysis |
specification |
|
serial |
ARLID |
cav_un_epca*0385694 |
ISSN |
1803-9782 |
title
|
ACC JOURNAL |
volume_id |
18 |
volume |
4 (2012) |
page_num |
154-164 |
publisher |
|
|
keyword |
regression analysis |
keyword |
Gordon surface |
keyword |
prediction error |
keyword |
projection pursuit |
author
(primary) |
ARLID |
cav_un_auth*0101227 |
name1 |
Volf |
name2 |
Petr |
full_dept (cz) |
Stochastická informatika |
full_dept (eng) |
Department of Stochastic Informatics |
department (cz) |
SI |
department (eng) |
SI |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GAP209/10/2045 |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0263360 |
|
abstract
(eng) |
The problem of non-parametric statistical modeling of 2-dimensional surfaces from observed data is studied. In general, the model is constructed from a set of basal functions, which means to estimate a number of parameters. We present two approaches allowing reduction of needed parameters, a well known method of projection pursuit and the less known method of Gordon surface. Further, we analyze consequences of sparse data to precision of model and uncertainty of prediction. |
reportyear |
2013 |
RIV |
BB |
num_of_auth |
1 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0217949 |
arlyear |
2012 |
mrcbU63 |
cav_un_epca*0385694 ACC JOURNAL 1803-9782 Roč. 18 č. 4 2012 154 164 MDPI |
|