bibtype M - Monography Chapter
ARLID 0389631
utime 20240103202230.7
mtime 20130312235959.9
SCOPUS 84893059669
DOI 10.1007/978-3-642-36406-8_3
title (primary) (eng) Automated Preference Elicitation for Decision Making
specification
page_count 35 s.
media_type P
book_pages 187
serial
ARLID cav_un_epca*0389630
ISBN 978-3-642-36405-1
ISSN 1860-949X
title Decision Making and Imperfection
part_num 3
part_title 474
page_num 65-99
publisher
place Berlin
name Springer
year 2013
keyword Bayesian decision making
keyword fully probabilistic design
keyword DM preference elicitation
keyword support of imperfect participants
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/AS/karny-0389631.pdf
cas_special
project
project_id GA13-13502S
agency GA ČR
ARLID cav_un_auth*0292725
project
project_id GA102/08/0567
agency GA ČR
ARLID cav_un_auth*0239566
research CEZ:AV0Z1075907
abstract (eng) In the contemporary complex world decisions are made by an imperfect participant devoting limited deliberation resources to any decision-making task. A normative decision-making (DM) theory should provide support systems allowing such a participant to make rational decisions in spite of the limited resources. Efficiency of the support systems depends on the interfaces enabling a participant to benefit from the support while exploiting the gradually accumulating knowledge about DM environment and respecting incomplete, possibly changing, participant’s DM preferences. The insufficiently elaborated preference elicitation makes even the best DM supports of a limited use. This chapter proposes a methodology of automatic eliciting of a quantitative DM preference description, discusses the options made and sketches open research problems. The proposed elicitation serves to fully probabilistic design, which includes a standard Bayesian decision making.
reportyear 2013
RIV BC
num_of_auth 1
mrcbC52 4 A 4a 20231122135525.1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0219534
mrcbT16-s 0.168
mrcbT16-4 Q4
mrcbT16-E Q4
arlyear 2013
mrcbTft \nSoubory v repozitáři: karny-0389631.pdf
mrcbU14 84893059669 SCOPUS
mrcbU63 cav_un_epca*0389630 Decision Making and Imperfection 3 978-3-642-36405-1 1860-949X 65 99 Berlin Springer 2013 Studies in Computational Intelligence 474