bibtype J - Journal Article
ARLID 0390234
utime 20240103202316.3
mtime 20130312235959.9
WOS 000322079000003
DOI 10.1117/1.JEI.22.1.013030
title (primary) (eng) Rotation and Noise Invariant Near-Infrared Face Recognition by means of Zernike Moments and Spectral Regression Discriminant Analysis
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0253710
ISSN 1017-9909
title Journal of Electronic Imaging
volume_id 22
volume 1 (2013)
page_num 1-11
keyword face recognition
keyword infrared imaging
keyword image moments
author (primary)
ARLID cav_un_auth*0280199
name1 Farokhi
name2 S.
country MY
author
ARLID cav_un_auth*0280200
name1 Shamsuddin
name2 S. M.
country MY
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0280201
name1 Sheikh
name2 U. U.
country MY
author
ARLID cav_un_auth*0290073
name1 Khansari
name2 M.
country IR
author
ARLID cav_un_auth*0290074
name1 Jafari-Khouzani
name2 K.
country US
source
url http://library.utia.cas.cz/separaty/2013/ZOI/flusser-rotation and noise invariant near-infrared face recognition by means of zernike moments and spectral regression discriminant analysis.pdf
cas_special
project
project_id GAP103/11/1552
agency GA ČR
ARLID cav_un_auth*0273618
abstract (eng) Face recognition is a rapidly growing research area, which is based heavily on the methods of machine learning, computer vision, and image processing.We propose a rotation and noise invariant near-infrared face-recognition system using an orthogonal invariant moment, namely, Zernike moments (ZMs) as a feature extractor in the near-infrared domain and spectral regression discriminant analysis (SRDA) as an efficient algorithm to decrease the computational complexity of the system, enhance the discrimination power of features, and solve the “small sample size” problem simultaneously. Experimental results based on the CASIA NIR database show the noise robustness and rotation invariance of the proposed approach. Further analysis shows that SRDA as a sophisticated technique, improves the accuracy and time complexity of the system compared with other data reduction methods such as linear discriminant analysis.
reportyear 2014
RIV JD
permalink http://hdl.handle.net/11104/0219539
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC|IMAGINGSCIENCEPHOTOGRAPHICTECHNOLOGY|OPTICS
mrcbT16-f 1.024
mrcbT16-g 0.115
mrcbT16-h 7.I
mrcbT16-i 0.00256
mrcbT16-j 0.31
mrcbT16-k 1255
mrcbT16-l 191
mrcbT16-s 0.311
mrcbT16-z ScienceCitationIndexExpanded
mrcbT16-4 Q2
mrcbT16-B 26.076
mrcbT16-C 32.337
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2013
mrcbU34 000322079000003 WOS
mrcbU63 cav_un_epca*0253710 Journal of Electronic Imaging 1017-9909 1560-229X Roč. 22 č. 1 2013 1 11