bibtype J - Journal Article
ARLID 0391390
utime 20240103202433.9
mtime 20130404235959.9
WOS 000316166200002
DOI 10.1016/j.ijar.2012.07.008
title (primary) (eng) Discrete pseudo-integrals
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 54
volume 3 (2013)
page_num 357-364
publisher
name Elsevier
keyword concave integral
keyword pseudo-addition
keyword pseudo-multiplication
author (primary)
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0205590
name1 Li
name2 J.
country CN
author
ARLID cav_un_auth*0280491
name1 Pap
name2 E.
country RS
source
url http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals.pdf
cas_special
project
project_id GAP402/11/0378
agency GA ČR
ARLID cav_un_auth*0273630
abstract (eng) Integration of simple functions is a corner stone of general integration theory and it covers integration over finite spaces discussed in this paper. Different kinds of decomposition and subdecomposition of simple functions into basic functions sums, as well as different kinds of pseudo-operations exploited for integration and summation result into several types of integrals, including among others, Lebesgue, Choquet, Sugeno, pseudo-additive, Shilkret, PAN, Benvenuti and concave integrals. Some basic properties of introduced discrete pseudoconcave integrals are discussed, and several examples of new integrals are given.
reportyear 2014
RIV BA
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0220518
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-f 2.072
mrcbT16-g 0.489
mrcbT16-h 5.VIII
mrcbT16-i 0.00519
mrcbT16-j 0.656
mrcbT16-k 1912
mrcbT16-l 90
mrcbT16-s 1.145
mrcbT16-4 Q1
mrcbT16-B 64.744
mrcbT16-C 76.446
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2013
mrcbU34 000316166200002 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 54 č. 3 2013 357 364 Elsevier