bibtype |
J -
Journal Article
|
ARLID |
0391392 |
utime |
20240103202434.1 |
mtime |
20130404235959.9 |
WOS |
000317886300005 |
DOI |
10.1016/j.fss.2012.07.015 |
title
(primary) (eng) |
Generation of linear orders for intervals by means of aggregation functions |
specification |
page_count |
9 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0256642 |
ISSN |
0165-0114 |
title
|
Fuzzy Sets and Systems |
volume_id |
220 |
volume |
1 (2013) |
page_num |
69-77 |
publisher |
|
|
keyword |
Interval-valued fuzzy set |
keyword |
linear order |
keyword |
aggregation function |
author
(primary) |
ARLID |
cav_un_auth*0271524 |
name1 |
Bustince |
name2 |
H. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0275658 |
name1 |
Fernandez |
name2 |
J. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0212843 |
name1 |
Kolesárová |
name2 |
A. |
country |
SK |
|
author
|
ARLID |
cav_un_auth*0101163 |
name1 |
Mesiar |
name2 |
Radko |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
institution |
UTIA-B |
full_dept |
Department of Econometrics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GAP402/11/0378 |
agency |
GA ČR |
ARLID |
cav_un_auth*0273630 |
|
abstract
(eng) |
The problem of choosing an appropriate total order is crucial for many applications that make use of extensions of fuzzy sets. In this work we introduce the concept of an admissible order as a total order that extends the usual partial order between intervals.We propose a method to build these admissible orders in terms of two aggregation functions and we prove that some of the most used examples of total orders that appear in the literature are specific cases of our construction. |
reportyear |
2014 |
RIV |
BA |
num_of_auth |
4 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0220521 |
mrcbT16-e |
COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY |
mrcbT16-f |
2.263 |
mrcbT16-g |
0.367 |
mrcbT16-h |
>10.0 |
mrcbT16-i |
0.01034 |
mrcbT16-j |
0.64 |
mrcbT16-k |
11823 |
mrcbT16-l |
177 |
mrcbT16-s |
1.342 |
mrcbT16-z |
ScienceCitationIndex |
mrcbT16-4 |
Q1 |
mrcbT16-B |
51.18 |
mrcbT16-C |
88.563 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q1* |
arlyear |
2013 |
mrcbU34 |
000317886300005 WOS |
mrcbU63 |
cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 220 č. 1 2013 69 77 Elsevier |
|