bibtype J - Journal Article
ARLID 0391392
utime 20240103202434.1
mtime 20130404235959.9
WOS 000317886300005
DOI 10.1016/j.fss.2012.07.015
title (primary) (eng) Generation of linear orders for intervals by means of aggregation functions
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 220
volume 1 (2013)
page_num 69-77
publisher
name Elsevier
keyword Interval-valued fuzzy set
keyword linear order
keyword aggregation function
author (primary)
ARLID cav_un_auth*0271524
name1 Bustince
name2 H.
country ES
author
ARLID cav_un_auth*0275658
name1 Fernandez
name2 J.
country ES
author
ARLID cav_un_auth*0212843
name1 Kolesárová
name2 A.
country SK
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/E/mesiar-generation of linear orders for intervals by means of aggregation functions.pdf
cas_special
project
project_id GAP402/11/0378
agency GA ČR
ARLID cav_un_auth*0273630
abstract (eng) The problem of choosing an appropriate total order is crucial for many applications that make use of extensions of fuzzy sets. In this work we introduce the concept of an admissible order as a total order that extends the usual partial order between intervals.We propose a method to build these admissible orders in terms of two aggregation functions and we prove that some of the most used examples of total orders that appear in the literature are specific cases of our construction.
reportyear 2014
RIV BA
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0220521
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-f 2.263
mrcbT16-g 0.367
mrcbT16-h >10.0
mrcbT16-i 0.01034
mrcbT16-j 0.64
mrcbT16-k 11823
mrcbT16-l 177
mrcbT16-s 1.342
mrcbT16-z ScienceCitationIndex
mrcbT16-4 Q1
mrcbT16-B 51.18
mrcbT16-C 88.563
mrcbT16-D Q2
mrcbT16-E Q1*
arlyear 2013
mrcbU34 000317886300005 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 220 č. 1 2013 69 77 Elsevier