| bibtype |
J -
Journal Article
|
| ARLID |
0392414 |
| utime |
20240103202547.4 |
| mtime |
20130920235959.9 |
| WOS |
000330718000007 |
| DOI |
10.1080/00036811.2012.760039 |
| title
(primary) (eng) |
Young measures supported on invertible matrices |
| specification |
| page_count |
19 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0290650 |
| ISSN |
0003-6811 |
| title
|
Applicable Analysis |
| volume_id |
93 |
| volume |
1 (2014) |
| page_num |
105-123 |
| publisher |
|
|
| keyword |
Young measures |
| keyword |
orientation-preserving mappings |
| keyword |
relaxation |
| author
(primary) |
| ARLID |
cav_un_auth*0255197 |
| name1 |
Benešová |
| name2 |
Barbora |
| full_dept (cz) |
D 5 - Ultrazvukové metody |
| full_dept (eng) |
D 5 - Ultrasonic Methods |
| institution |
UT-L |
| full_dept |
D5 – Ultrasonic Methods |
| fullinstit |
Ústav termomechaniky AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0101142 |
| name1 |
Kružík |
| name2 |
Martin |
| full_dept (cz) |
Matematická teorie rozhodování |
| full_dept |
Department of Decision Making Theory |
| department (cz) |
MTR |
| department |
MTR |
| institution |
UTIA-B |
| full_dept |
Department of Decision Making Theory |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0263956 |
| name1 |
Pathó |
| name2 |
G. |
| country |
CZ |
|
| source |
|
| cas_special |
| project |
| project_id |
GAP201/12/0671 |
| agency |
GA ČR |
| country |
CZ |
| ARLID |
cav_un_auth*0289475 |
|
| project |
| project_id |
GAP201/10/0357 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0263489 |
|
| abstract
(eng) |
Motivated by variational problems in nonlinear elasticity, we explicitly characterize the set of Young measures generated by gradients of a uniformly bounded sequence in $W^{1,/infty}(/O;/R^n)$ where the inverted gradients are also bounded in $L^/infty(/O;/R^{n/times n})$. This extends the original results due to D.~Kinderlehrer and P.~Pedregal /cite{k-p1}. Besides, we completely describe Young measures generated by a sequence of matrix-valued mappings $/{Y_k/}_{k/in/N} /subset L^p(/O;/R^{n/times n})$, such that $/{Y_k^{-1}/}_{k/in/N} /subset L^p(/O;/R^{n/times n})$ is bounded, too, and the generating sequence satisfies the constraint $/det Y_k > 0$. |
| reportyear |
2014 |
| RIV |
BA |
| num_of_auth |
3 |
| inst_support |
RVO:67985556 |
| inst_support |
RVO:61388998 |
| permalink |
http://hdl.handle.net/11104/0221746 |
| mrcbT16-e |
MATHEMATICSAPPLIED |
| mrcbT16-j |
0.573 |
| mrcbT16-s |
0.758 |
| mrcbT16-4 |
Q2 |
| mrcbT16-B |
41.9 |
| mrcbT16-C |
46.887 |
| mrcbT16-D |
Q3 |
| mrcbT16-E |
Q2 |
| arlyear |
2014 |
| mrcbU34 |
000330718000007 WOS |
| mrcbU63 |
cav_un_epca*0290650 Applicable Analysis 0003-6811 1563-504X Roč. 93 č. 1 2014 105 123 Taylor & Francis |
|