bibtype |
J -
Journal Article
|
ARLID |
0392414 |
utime |
20240103202547.4 |
mtime |
20130920235959.9 |
WOS |
000330718000007 |
DOI |
10.1080/00036811.2012.760039 |
title
(primary) (eng) |
Young measures supported on invertible matrices |
specification |
page_count |
19 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0290650 |
ISSN |
0003-6811 |
title
|
Applicable Analysis |
volume_id |
93 |
volume |
1 (2014) |
page_num |
105-123 |
publisher |
|
|
keyword |
Young measures |
keyword |
orientation-preserving mappings |
keyword |
relaxation |
author
(primary) |
ARLID |
cav_un_auth*0255197 |
name1 |
Benešová |
name2 |
Barbora |
full_dept (cz) |
D 5 - Ultrazvukové metody |
full_dept (eng) |
D 5 - Ultrasonic Methods |
institution |
UT-L |
full_dept |
D5 – Ultrasonic Methods |
fullinstit |
Ústav termomechaniky AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101142 |
name1 |
Kružík |
name2 |
Martin |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0263956 |
name1 |
Pathó |
name2 |
G. |
country |
CZ |
|
source |
|
cas_special |
project |
project_id |
GAP201/12/0671 |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0289475 |
|
project |
project_id |
GAP201/10/0357 |
agency |
GA ČR |
ARLID |
cav_un_auth*0263489 |
|
abstract
(eng) |
Motivated by variational problems in nonlinear elasticity, we explicitly characterize the set of Young measures generated by gradients of a uniformly bounded sequence in $W^{1,/infty}(/O;/R^n)$ where the inverted gradients are also bounded in $L^/infty(/O;/R^{n/times n})$. This extends the original results due to D.~Kinderlehrer and P.~Pedregal /cite{k-p1}. Besides, we completely describe Young measures generated by a sequence of matrix-valued mappings $/{Y_k/}_{k/in/N} /subset L^p(/O;/R^{n/times n})$, such that $/{Y_k^{-1}/}_{k/in/N} /subset L^p(/O;/R^{n/times n})$ is bounded, too, and the generating sequence satisfies the constraint $/det Y_k > 0$. |
reportyear |
2014 |
RIV |
BA |
num_of_auth |
3 |
inst_support |
RVO:67985556 |
inst_support |
RVO:61388998 |
permalink |
http://hdl.handle.net/11104/0221746 |
mrcbT16-e |
MATHEMATICSAPPLIED |
mrcbT16-j |
0.573 |
mrcbT16-s |
0.758 |
mrcbT16-4 |
Q2 |
mrcbT16-B |
41.9 |
mrcbT16-C |
46.887 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q3 |
arlyear |
2014 |
mrcbU34 |
000330718000007 WOS |
mrcbU63 |
cav_un_epca*0290650 Applicable Analysis 0003-6811 1563-504X Roč. 93 č. 1 2014 105 123 Taylor & Francis |
|