bibtype J - Journal Article
ARLID 0392414
utime 20240103202547.4
mtime 20130920235959.9
WOS 000330718000007
DOI 10.1080/00036811.2012.760039
title (primary) (eng) Young measures supported on invertible matrices
specification
page_count 19 s.
media_type P
serial
ARLID cav_un_epca*0290650
ISSN 0003-6811
title Applicable Analysis
volume_id 93
volume 1 (2014)
page_num 105-123
publisher
name Taylor & Francis
keyword Young measures
keyword orientation-preserving mappings
keyword relaxation
author (primary)
ARLID cav_un_auth*0255197
name1 Benešová
name2 Barbora
full_dept (cz) D 5 - Ultrazvukové metody
full_dept (eng) D 5 - Ultrasonic Methods
institution UT-L
full_dept D5 – Ultrasonic Methods
fullinstit Ústav termomechaniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0101142
name1 Kružík
name2 Martin
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0263956
name1 Pathó
name2 G.
country CZ
source
url http://library.utia.cas.cz/separaty/2013/MTR/kruzik-young measures supported on invertible matrices.pdf
cas_special
project
project_id GAP201/12/0671
agency GA ČR
country CZ
ARLID cav_un_auth*0289475
project
project_id GAP201/10/0357
agency GA ČR
ARLID cav_un_auth*0263489
abstract (eng) Motivated by variational problems in nonlinear elasticity, we explicitly characterize the set of Young measures generated by gradients of a uniformly bounded sequence in $W^{1,/infty}(/O;/R^n)$ where the inverted gradients are also bounded in $L^/infty(/O;/R^{n/times n})$. This extends the original results due to D.~Kinderlehrer and P.~Pedregal /cite{k-p1}. Besides, we completely describe Young measures generated by a sequence of matrix-valued mappings $/{Y_k/}_{k/in/N} /subset L^p(/O;/R^{n/times n})$, such that $/{Y_k^{-1}/}_{k/in/N} /subset L^p(/O;/R^{n/times n})$ is bounded, too, and the generating sequence satisfies the constraint $/det Y_k > 0$.
reportyear 2014
RIV BA
num_of_auth 3
inst_support RVO:67985556
inst_support RVO:61388998
permalink http://hdl.handle.net/11104/0221746
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.573
mrcbT16-s 0.758
mrcbT16-4 Q2
mrcbT16-B 41.9
mrcbT16-C 46.887
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2014
mrcbU34 000330718000007 WOS
mrcbU63 cav_un_epca*0290650 Applicable Analysis 0003-6811 1563-504X Roč. 93 č. 1 2014 105 123 Taylor & Francis