| bibtype |
J -
Journal Article
|
| ARLID |
0392521 |
| utime |
20240903115738.9 |
| mtime |
20130603235959.9 |
| WOS |
000314310700004 |
| DOI |
10.1103/PhysRevE.87.012136 |
| title
(primary) (eng) |
Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q |
| specification |
| page_count |
5 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0021752 |
| ISSN |
1539-3755 |
| title
|
Physical Review E |
| volume_id |
87 |
| publisher |
| name |
American Physical Society |
|
|
| keyword |
Monte Carlo simulation |
| keyword |
two-dimensional lattices |
| keyword |
q-state Potts |
| author
(primary) |
| ARLID |
cav_un_auth*0272813 |
| name1 |
Huang |
| name2 |
Y. |
| country |
CN |
|
| author
|
| ARLID |
cav_un_auth*0291431 |
| name1 |
Chen |
| name2 |
K. |
| country |
CN |
|
| author
|
| name1 |
Deng |
| name2 |
Y. |
| country |
CN |
| ARLID |
cav_un_auth*0291432 |
|
| author
|
| name1 |
Jacobsen |
| name2 |
J. L. |
| country |
FR |
| ARLID |
cav_un_auth*0291433 |
|
| author
|
| name1 |
Kotecký |
| name2 |
R. |
| country |
CZ |
| ARLID |
cav_un_auth*0291434 |
|
| author
|
| name1 |
Salas |
| name2 |
J. |
| country |
ES |
| ARLID |
cav_un_auth*0291435 |
|
| author
|
| ARLID |
cav_un_auth*0291436 |
| name1 |
Sokal |
| name2 |
Alan D. |
| country |
US |
|
| author
|
| ARLID |
cav_un_auth*0217893 |
| name1 |
Swart |
| name2 |
Jan M. |
| full_dept (cz) |
Stochastická informatika |
| full_dept |
Department of Stochastic Informatics |
| department (cz) |
SI |
| department |
SI |
| institution |
UTIA-B |
| full_dept |
Department of Stochastic Informatics |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| project |
| project_id |
GAP201/12/2613 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0291241 |
|
| abstract
(eng) |
We exhibit infinite families of two-dimensional lattices (some of which are triangulations or quadrangulations of the plane) on which the q-state Potts antiferromagnet has a finite-temperature phase transition at arbitrarily large values of q. This unexpected result is proven rigorously by using a Peierls argument to measure the entropic advantage of sublattice long-range order. Additional numerical data are obtained using transfer matrices, Monte Carlo simulation, and a high-precision graph-theoretic method. |
| reportyear |
2014 |
| RIV |
BE |
| num_of_auth |
8 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0221521 |
| mrcbT16-e |
PHYSICSFLUIDSPLASMAS|PHYSICSMATHEMATICAL |
| mrcbT16-f |
2.302 |
| mrcbT16-g |
0.548 |
| mrcbT16-h |
8.I |
| mrcbT16-i |
0.17934 |
| mrcbT16-j |
0.889 |
| mrcbT16-k |
78897 |
| mrcbT16-l |
2503 |
| mrcbT16-s |
1.127 |
| mrcbT16-z |
ScienceCitationIndex |
| mrcbT16-4 |
Q1 |
| mrcbT16-B |
59.234 |
| mrcbT16-C |
81.290 |
| mrcbT16-D |
Q2 |
| mrcbT16-E |
Q3 |
| arlyear |
2013 |
| mrcbU34 |
000314310700004 WOS |
| mrcbU63 |
cav_un_epca*0021752 Physical Review E 1539-3755 2470-0053 Roč. 87 Č. 1 2013 , 12136-1-12136-5 American Physical Society |
|