bibtype J - Journal Article
ARLID 0392551
utime 20240103202556.7
mtime 20130730235959.9
WOS 000327757200004
SCOPUS 84879995946
DOI 10.1080/13873954.2013.789064
title (primary) (eng) Centralized Bayesian reliability modelling with sensor networks
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0255973
ISSN 1387-3954
title Mathematical and Computer Modelling of Dynamical Systems
volume_id 19
volume 5 (2013)
page_num 471-482
keyword Bayesian modelling
keyword Sensor network
keyword Reliability
author (primary)
ARLID cav_un_auth*0242543
name1 Dedecius
name2 Kamil
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0263972
name1 Sečkárová
name2 Vladimíra
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/AS/dedecius-0392551.pdf
cas_special
project
project_id SVV-265315
agency GA MŠk
country CZ
ARLID cav_un_auth*0291444
project
project_id 7D12004
agency GA MŠk
ARLID cav_un_auth*0291242
abstract (eng) The article concerns reliability estimation in modern dynamic systems. It introduces a novel approach, exploiting a network of several independent spatially distributed sensors, actively probing the monitored system. A dedicated network element - the fusion centre - is then responsible for processing the information provided by sensors and evaluation of final reliability estimate. On the base of computational abilities of sensors, we propose two conceptually different reliability estimation scenarios: (1) the computationally cheaper dummy sensors scenario, in which the sensors send raw data to the fusion centre; and (2) the smart sensors scenario, when the data are processed locally by sensors, and the fusion centre subsequently merges their resulting information. Bayesian paradigm was adopted for consistent information representation, its adaptive dynamic processing and fusion.
reportyear 2014
RIV BD
num_of_auth 2
mrcbC52 4 A 4a 20231122135631.6
permalink http://hdl.handle.net/11104/0221520
mrcbT16-e COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|MATHEMATICSAPPLIED
mrcbT16-f 0.811
mrcbT16-g 0.088
mrcbT16-h 5.III
mrcbT16-i 0.00100
mrcbT16-j 0.377
mrcbT16-k 233
mrcbT16-l 34
mrcbT16-s 0.426
mrcbT16-z ScienceCitationIndexExpanded
mrcbT16-4 Q2
mrcbT16-B 24.746
mrcbT16-C 47.046
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2013
mrcbTft \nSoubory v repozitáři: dedecius-0392551.pdf
mrcbU14 84879995946 SCOPUS
mrcbU34 000327757200004 WOS
mrcbU63 cav_un_epca*0255973 Mathematical and Computer Modelling of Dynamical Systems 1387-3954 1744-5051 Roč. 19 č. 5 2013 471 482