bibtype C - Conference Paper (international conference)
ARLID 0392903
utime 20240111140831.4
mtime 20130613235959.9
WOS 000329611506024
DOI 10.1109/ICASSP.2013.6638809
title (primary) (eng) A Further Improvement of a Fast Damped Gauss–Newton Algorithm for CANDECOMP-PARAFAC Tensor Decomposition
specification
page_count 5 s.
media_type C
serial
ARLID cav_un_epca*0392897
ISBN 978-1-4799-0355-9
title 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2013
page_num 5964-5968
publisher
place Vancouver
name IEEE
year 2013
keyword tensor factorization
keyword Gauss-Newton method
author (primary)
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2013/SI/tichavsky-a further improvement of a fast damped gauss-newton algorithm for candecomp-parafac tensor decomposition.pdf
source_size 110kB
cas_special
project
project_id GA102/09/1278
agency GA ČR
ARLID cav_un_auth*0253174
abstract (eng) In this paper, a novel implementation of the damped Gauss-Newton algorithm (also known as Levenberg-Marquart) for the CANDECOMP-PARAFAC (CP) tensor decomposition is proposed. The method is based on a fast inversion of the approximate Hessian for the problem. It is shown that the inversion can be computed on O(NR^6) operations, where N and R is the tensor order and rank, respectively. It is less than in the best existing state-of-the art algorithm with O(N^3R^6) operations. The damped Gauss-Newton algorithm is suitable namely for difficult scenarios, where nearly-colinear factors appear in several modes simultaneously. Performance of the method is shown on decomposition of large tensors (100 × 100 × 100 and 100 × 100 × 100 × 100) of rank 5 to 90.
action
ARLID cav_un_auth*0291703
name IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2013
place Vancouver
dates 27.05.2013-31.05.2013
country CA
reportyear 2014
RIV BB
num_of_auth 3
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0221812
arlyear 2013
mrcbU34 000329611506024 WOS
mrcbU56 110kB
mrcbU63 cav_un_epca*0392897 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2013 978-1-4799-0355-9 5964 5968 Vancouver IEEE 2013 CFP13ICA-USB