bibtype J - Journal Article
ARLID 0393047
utime 20240103202632.7
mtime 20130625235959.9
WOS 000319540500005
SCOPUS 84877574625
DOI 10.1016/j.automatica.2013.02.046
title (primary) (eng) Marginalized adaptive particle filtering for nonlinear models with unknown time-varying noise parameters
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0256218
ISSN 0005-1098
title Automatica
volume_id 49
volume 6 (2013)
page_num 1566-1575
publisher
name Elsevier
keyword Unknown Noise Statistics
keyword Adaptive Filtering
keyword Marginalized Particle Filter
keyword Bayesian Conjugate prior
author (primary)
ARLID cav_un_auth*0291804
name1 Ökzan
name2 E.
country SE
author
ARLID cav_un_auth*0101207
name1 Šmídl
name2 Václav
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
institution UTIA-B
full_dept Department of Adaptive Systems
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0291805
name1 Saha
name2 S.
country SE
author
ARLID cav_un_auth*0291806
name1 Lundquist
name2 C.
country SE
author
ARLID cav_un_auth*0273975
name1 Gustafsson
name2 F.
country SE
source
url http://library.utia.cas.cz/separaty/2013/AS/smidl-0393047.pdf
cas_special
project
project_id GAP102/11/0437
agency GA ČR
country CZ
ARLID cav_un_auth*0273082
abstract (eng) Knowledge of noise distribution is typically crucial for good estimation of a non-linear state-space model. However, properties of the noise process are often unknown in the majority of practical applications. Moreover, distribution of the noise may be non-stationary or state dependent, which prevents the use of off-line tuning methods. General estimation methods, such as particle filtering can be used to estimate the noise parameters, however at the price of heavy computational load. In this paper, we present an approach based on marginalized particle filtering where the noise parameters have analytical distribution. Explicit modeling of parameter non-stationarity is avoided and it is replaced by maximum-entropy estimation based on the assumption of slowly varying parameters. Properties of the resulting algorithm are illustrated on both a standard example and a navigation application based on odometry. The latter involves formulas for dead reckoning rotational speeds of two wheels with unknown radii.
reportyear 2014
RIV BC
num_of_auth 5
mrcbC52 4 A 4a 20231122135647.0
permalink http://hdl.handle.net/11104/0221976
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 4.423
mrcbT16-g 0.392
mrcbT16-h 7.II
mrcbT16-i 0.05155
mrcbT16-j 1.707
mrcbT16-k 18940
mrcbT16-l 446
mrcbT16-s 3.342
mrcbT16-z ScienceCitationIndex
mrcbT16-4 Q1
mrcbT16-B 94.953
mrcbT16-C 89.350
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2013
mrcbTft \nSoubory v repozitáři: smidl-0393047.pdf
mrcbU14 84877574625 SCOPUS
mrcbU34 000319540500005 WOS
mrcbU63 cav_un_epca*0256218 Automatica 0005-1098 1873-2836 Roč. 49 č. 6 2013 1566 1575 Elsevier