bibtype J - Journal Article
ARLID 0393198
utime 20240103202642.8
mtime 20130709235959.9
WOS 000320573300008
DOI 10.1080/07362994.2012.628916
title (primary) (eng) On weak solutions of stochastic differential equations II
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0255142
ISSN 0736-2994
title Stochastic Analysis and Applications
volume_id 31
volume 4 (2013)
page_num 663-670
publisher
name Taylor & Francis
keyword fractional integrals
keyword stochastic differential equations
keyword weak solutions
author (primary)
ARLID cav_un_auth*0279359
name1 Hofmanová
name2 Martina
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0233028
name1 Seidler
name2 Jan
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/SI/hofmanova-on weak solutions of stochastic differential equations II.pdf
cas_special
project
project_id GAP201/10/0752
agency GA ČR
ARLID cav_un_auth*0263519
abstract (eng) In the first part of this article a new method of proving existence of weak solutions to stochastic differential equations with continuous coefficients having at most linear growth was developed. In this second part, we show that the same method may be used even if the linear growth hypothesis is replaced with a suitable Lyapunov condition
reportyear 2014
RIV BA
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0221984
mrcbT16-e MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-f 0.703
mrcbT16-g 0.071
mrcbT16-h 9.II
mrcbT16-i 0.00273
mrcbT16-j 0.516
mrcbT16-k 709
mrcbT16-l 56
mrcbT16-s 0.658
mrcbT16-z ScienceCitationIndexExpanded
mrcbT16-4 Q3
mrcbT16-B 35.178
mrcbT16-C 35.975
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2013
mrcbU34 000320573300008 WOS
mrcbU63 cav_un_epca*0255142 Stochastic Analysis and Applications 0736-2994 1532-9356 Roč. 31 č. 4 2013 663 670 Taylor & Francis