bibtype J - Journal Article
ARLID 0394387
utime 20240103202740.9
mtime 20131111235959.9
WOS 000322395100007
SCOPUS 84881007111
DOI 10.1142/S0218001413540062
title (primary) (eng) Steerability of Hermite Kernel
specification
page_count 25 s.
media_type E
serial
ARLID cav_un_epca*0253420
ISSN 0218-0014
title International Journal of Pattern Recognition and Artificial Intelligence
volume_id 27
volume 4 (2013)
keyword Hermite polynomials
keyword Hermite kernel
keyword steerability
keyword adaptive filtering
author (primary)
ARLID cav_un_auth*0292817
name1 Yang
name2 Bo
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101203
name1 Suk
name2 Tomáš
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/ZOI/yang-0394387.pdf
cas_special
project
project_id GAP103/11/1552
agency GA ČR
ARLID cav_un_auth*0273618
abstract (eng) Steerability is a useful and important property of “kernel” functions. It enables certain complicated operations involving orientation manipulation on images to be executed with high efficiency. Thus, we focus our attention on the steerability of Hermite polynomials and their versions modulated by the Gaussian function with different powers, defined as the Hermite kernel. Certain special cases of such kernel, Hermite polynomials, Hermite functions and Gaussian derivatives are discussed in detail. Correspondingly, these cases demonstrate that the Hermite kernel is a powerful and effective tool for image processing. Furthermore, the steerability of the Hermite kernel is proved with the help of a property of Hermite polynomials revealing the rule concerning the product of two Hermite polynomials after coordination rotation. Consequently, any order of the Hermite kernel inherits steerability. Moreover, a couple sets of an explicit interpolation function and basis function can be directly obtained.
reportyear 2014
RIV JD
num_of_auth 3
mrcbC52 4 A 4a 20231122135712.0
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0225825
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-f 0.856
mrcbT16-g 0.100
mrcbT16-h 8.0
mrcbT16-i 0.00179
mrcbT16-j 0.286
mrcbT16-k 773
mrcbT16-l 80
mrcbT16-s 0.278
mrcbT16-z ScienceCitationIndexExpanded
mrcbT16-4 Q3
mrcbT16-B 21.63
mrcbT16-C 21.901
mrcbT16-D Q4
mrcbT16-E Q3
arlyear 2013
mrcbTft \nSoubory v repozitáři: yang-0394387.pdf
mrcbU14 84881007111 SCOPUS
mrcbU34 000322395100007 WOS
mrcbU63 cav_un_epca*0253420 International Journal of Pattern Recognition and Artificial Intelligence 0218-0014 1793-6381 Roč. 27 č. 4 2013 , 1354006-1-1354006-25