bibtype J - Journal Article
ARLID 0394660
utime 20240103202800.4
mtime 20130819235959.9
WOS 000322428100007
DOI 10.1016/j.knosys.2013.04.016
title (primary) (eng) Useful tools for non-linear systems: Several non-linear integral inequalities
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0257173
ISSN 0950-7051
title Knowledge-Based System
volume_id 49
volume 1 (2013)
page_num 73-80
publisher
name Elsevier
keyword Monotone measure
keyword Comonotone functions
keyword Integral inequalities
keyword Universal integral
author (primary)
ARLID cav_un_auth*0261431
name1 Agahi
name2 H.
country IR
author
ARLID cav_un_auth*0283606
name1 Mohammadpour
name2 A.
country IR
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
garant G
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0283607
name1 Vaezpour
name2 M. S.
country IR
source
url http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf
cas_special
project
project_id GAP402/11/0378
agency GA ČR
ARLID cav_un_auth*0273630
abstract (eng) Integral inequalities play important roles in classical probability and measure theory. Universal integrals provide a useful tool in many problems in engineering and non-linear systems where the aggregation of data is required. We discuss several inequalities including Hardy, Berwald, Barnes–Godunova–Levin, Markov and Chebyshev for a monotone measure-based universal integral. Some recent results are obtained as corollaries. Finally, we provide some applications of our results in intelligent decision support systems, estimation and information fusion.
reportyear 2014
RIV BA
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0222933
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-f 2.920
mrcbT16-g 0.573
mrcbT16-h 3.0
mrcbT16-i 0.00667
mrcbT16-j 0.603
mrcbT16-k 2629
mrcbT16-l 295
mrcbT16-s 1.563
mrcbT16-z ScienceCitationIndex
mrcbT16-4 Q1
mrcbT16-B 59.074
mrcbT16-C 88.017
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2013
mrcbU34 000322428100007 WOS
mrcbU63 cav_un_epca*0257173 Knowledge-Based System 0950-7051 1872-7409 Roč. 49 č. 1 2013 73 80 Elsevier