bibtype J - Journal Article
ARLID 0395342
utime 20240103202847.2
mtime 20130919235959.9
WOS 000326766400029
DOI 10.1016/j.physa.2013.08.041
title (primary) (eng) Mixed-correlated ARFIMA processes for power-law cross-correlations
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0257423
ISSN 0378-4371
title Physica. A : Statistical Mechanics and its Applications
volume_id 392
volume 24 (2013)
page_num 6484-6493
publisher
name Elsevier
keyword power-law cross-correlations
keyword long-term memory
keyword econophysics
author (primary)
ARLID cav_un_auth*0256902
name1 Krištoufek
name2 Ladislav
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/E/kristoufek-mixed-correlated arfima processes for power-law cross-correlations.pdf
cas_special
project
project_id GA402/09/0965
agency GA ČR
ARLID cav_un_auth*0253176
abstract (eng) We introduce a general framework of the Mixed-correlated ARFIMA (MC-ARFIMA) processes which allows for various specifications of univariate and bivariate long-term memory. Apart from a standard case when $H_{xy} = /frac{1}{2}(H_x + H_y)$, MC-ARFIMA also allows for processes with $H_{xy} < /frac{1}{2}(H_x + H_y)$ but also for long-range correlated processes which are either short-range cross-correlated or simply correlated. The major contribution of MC-ARFIMA lies in the fact that the processes have well-defined asymptotic properties for $H_x$, $H_y$ and $H_{xy}$, which are derived in the paper, so that the processes can be used in simulation studies comparing various estimators of the bivariate Hurst exponent Hxy. Moreover, the framework allows for modeling of processes which are found to have $H_{xy} < /frac{1}{2}(H_x + H_y)$.
reportyear 2014
RIV AH
num_of_auth 1
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0223794
mrcbT16-e PHYSICSMULTIDISCIPLINARY
mrcbT16-f 1.684
mrcbT16-g 0.423
mrcbT16-h 8.III
mrcbT16-i 0.02372
mrcbT16-j 0.473
mrcbT16-k 15866
mrcbT16-l 653
mrcbT16-s 0.657
mrcbT16-z ScienceCitationIndex
mrcbT16-4 Q2
mrcbT16-B 54.929
mrcbT16-C 68.590
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2013
mrcbU34 000326766400029 WOS
mrcbU63 cav_un_epca*0257423 Physica. A : Statistical Mechanics and its Applications 0378-4371 1873-2119 Roč. 392 č. 24 2013 6484 6493 Elsevier