bibtype C - Conference Paper (international conference)
ARLID 0396302
utime 20240111140835.0
mtime 20130926235959.9
title (primary) (eng) Informed generalized sidelobe canceler utilizing sparsity of speech signals
specification
page_count 6 s.
media_type C
serial
ARLID cav_un_epca*0396301
ISBN 978-1-4799-1178-3
title Proceedings of MLSP2013
publisher
place Piscataway, USA
name IEEE
year 2013
keyword noise extraction
keyword speech enhancement
keyword generalized sidelobe canceler
author (primary)
ARLID cav_un_auth*0050739
name1 Málek
name2 J.
country CZ
author
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0294189
name1 Gannot
name2 S.
country IL
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/SI/tichavsky-informed generalized sidelobe canceler utilizing sparsity of speech signals.pdf
source_size 149kB
cas_special
project
project_id GAP103/11/1947
agency GA ČR
country CZ
ARLID cav_un_auth*0301478
abstract (eng) This report proposes a novel variant of the generalized sidelobe canceler. It assumes that a set of prepared relative transfer functions (RTFs) is available for several potential positions of a target source within a confined area. The key problem here is to select the correct RTF at any time, even when the exact position of the target is unknown and interfering sources are present. We propose to select the RTF based on l_p-norm, p ≤ 1, measured at the blocking matrix output in the frequency domain. Subsequent experiments show that this approach significantly outperforms previously proposed methods for selection when the target and interferer signals are speech signals.
action
name IEEE International Workshop on Machine Learning for Signal Processing
place Southampton
dates 22.09.2013-25.09.2013
country GB
ARLID cav_un_auth*0294180
reportyear 2014
RIV BI
num_of_auth 4
presentation_type PR
permalink http://hdl.handle.net/11104/0224135
mrcbC61 1
arlyear 2013
mrcbU56 149kB
mrcbU63 cav_un_epca*0396301 Proceedings of MLSP2013 978-1-4799-1178-3 Piscataway, USA IEEE 2013