bibtype J - Journal Article
ARLID 0396774
utime 20240111140835.2
mtime 20131031235959.9
WOS 000324342900016
DOI 10.1109/TSP.2013.2269903
title (primary) (eng) Fast Alternating LS Algorithms for High Order CANDECOMP/PARAFAC Tensor Factorizations
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0256727
ISSN 1053-587X
title IEEE Transactions on Signal Processing
volume_id 61
volume 19 (2013)
page_num 4834-4846
keyword Canonical polyadic decomposition
keyword tensor decomposition
author (primary)
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2013/SI/tichavsky-0396774.pdf
source_size 4.2MB
cas_special
project
project_id GA102/09/1278
agency GA ČR
ARLID cav_un_auth*0253174
abstract (eng) CANDECOMP/PARAFAC (CP) has found numerous applications in wide variety of areas such as in chemometrics, telecommunication, data mining, neuroscience, separated representations. For an order- tensor, most CP algorithms can be computationally demanding due to computation of gradients which are related to products between tensor unfoldings and Khatri-Rao products of all factor matrices except one. These products have the largest workload in most CP algorithms. In this paper, we propose a fast method to deal with this issue. Themethod also reduces the extra memory requirements of CP algorithms. As a result, we can accelerate the standard alternating CP algorithms 20–30 times for order-5 and order-6 tensors, and even higher ratios can be obtained for higher order tensors (e.g., N>=10). The proposed method is more efficient than the state-of-the-art ALS algorithm which operates two modes at a time (ALSo2) in the Eigenvector PLS toolbox, especially for tensors with order N>=5 and high rank.
reportyear 2014
RIV BB
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0225512
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 3.592
mrcbT16-g 0.439
mrcbT16-h 7.II
mrcbT16-i 0.07199
mrcbT16-j 1.62
mrcbT16-k 22913
mrcbT16-l 508
mrcbT16-s 2.074
mrcbT16-4 Q1
mrcbT16-B 94.605
mrcbT16-C 90.927
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2013
mrcbU34 000324342900016 WOS
mrcbU56 4.2MB
mrcbU63 cav_un_epca*0256727 IEEE Transactions on Signal Processing 1053-587X 1941-0476 Roč. 61 č. 19 2013 4834 4846