bibtype J - Journal Article
ARLID 0396775
utime 20240111140835.2
mtime 20131031235959.9
WOS 000324342900017
DOI 10.1109/TSP.2013.2269046
title (primary) (eng) CANDECOMP/PARAFAC Decomposition of High-Order Tensors Through Tensor Reshaping
specification
page_count 14 s.
media_type P
serial
ARLID cav_un_epca*0256727
ISSN 1053-587X
title IEEE Transactions on Signal Processing
volume_id 61
volume 19 (2013)
page_num 4847-4860
keyword tensor factorization
keyword canonical polyadic decomposition
keyword Cramer-Rao bound
author (primary)
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2013/SI/tichavsky-0396775.pdf
source_size 3.98 MB
cas_special
project
project_id GA102/09/1278
agency GA ČR
ARLID cav_un_auth*0253174
abstract (eng) In general, algorithms for order-3 CANDECOMP/ PARAFAC (CP), also coined canonical polyadic decomposition (CPD), are easy to implement and can be extended to higher order CPD. Unfortunately, the algorithms become computationally demanding, and they are often not applicable to higher order and relatively large scale tensors. In this paper, by exploiting the uniqueness of CPD and the relation of a tensor in Kruskal form and its unfolded tensor, we propose a fast approach to deal with this problem. Instead of directly factorizing the high order data tensor, the method decomposes an unfolded tensor with lower order, e.g., order-3 tensor. On the basis of the order-3 estimated tensor, a structured Kruskal tensor, of the same dimension as the data tensor, is then generated, and decomposed to find the final solution using fast algorithms for the structured CPD. In addition, strategies to unfold tensors are suggested and practically verified in the paper.
reportyear 2014
RIV BB
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0225514
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 3.592
mrcbT16-g 0.439
mrcbT16-h 7.II
mrcbT16-i 0.07199
mrcbT16-j 1.62
mrcbT16-k 22913
mrcbT16-l 508
mrcbT16-s 2.074
mrcbT16-4 Q1
mrcbT16-B 94.605
mrcbT16-C 90.927
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2013
mrcbU34 000324342900017 WOS
mrcbU56 3.98 MB
mrcbU63 cav_un_epca*0256727 IEEE Transactions on Signal Processing 1053-587X 1941-0476 Roč. 61 č. 19 2013 4847 4860