bibtype J - Journal Article
ARLID 0396861
utime 20240903175012.8
mtime 20131031235959.9
WOS 000322334900004
DOI 10.1109/TASL.2013.2264674
title (primary) (eng) Semi-Blind Noise Extraction Using Partially Known Position of the Target Source
specification
page_count 13 s.
media_type P
serial
ARLID cav_un_epca*0311609
ISSN 1558-7916
title IEEE Transactions on Audio Speech and Language Processing
volume_id 21
volume 10 (2013)
page_num 2029-2041
keyword Independent component analysis
keyword noise extraction
keyword generalized sidelobe canceler
author (primary)
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0050739
name1 Málek
name2 J.
country CZ
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0295347
name1 Nesta
name2 F.
country IT
source
url http://library.utia.cas.cz/separaty/2013/SI/tichavsky-0396861.pdf
source_size 3.05 MB
cas_special
project
project_id GAP103/11/1947
agency GA ČR
country CZ
ARLID cav_un_auth*0301478
abstract (eng) An extracted noise signal provides important information for subsequent enhancement of a target signal. When the target’s position is fixed, the noise extractor could be a target-cancellation filter derived in a noise-free situation. In this paper we consider a situation when such cancellation filters are prepared for a set of several possible positions of the target in advance. The set of filters is interpreted as prior information available for the noise extraction when the target’s exact position is unknown. Our novel method looks for a linear combination of the prepared filters via Independent Component Analysis. The method yields a filter that has a better cancellation performance than the individual filters or filters based on a minimum variance principle. The method is tested in a highly noisy and reverberant real-world environment with moving target source and interferers. A post-processing by Wiener filter using the noise signal extracted by the method is able to improve signal-to-noise ratio of the target by up to 8 dB.
reportyear 2014
RIV BI
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0225513
mrcbC62 1
cooperation
ARLID cav_un_auth*0295064
institution TUL
name Technická univerzita v Liberci
country CZ
mrcbC63-f Liberec
mrcbT16-e ACOUSTICS|ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 2.583
mrcbT16-g 0.416
mrcbT16-h 4.0
mrcbT16-i 0.01051
mrcbT16-j 0.715
mrcbT16-k 3492
mrcbT16-l 219
mrcbT16-s 1.021
mrcbT16-z ScienceCitationIndexExpanded
mrcbT16-4 Q1
mrcbT16-B 64.892
mrcbT16-C 84.738
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2013
mrcbU34 000322334900004 WOS
mrcbU56 3.05 MB
mrcbU63 cav_un_epca*0311609 IEEE Transactions on Audio Speech and Language Processing 1558-7916 1558-7924 Roč. 21 č. 10 2013 2029 2041