bibtype C - Conference Paper (international conference)
ARLID 0397249
utime 20240103203059.2
mtime 20131112235959.9
DOI 10.1007/978-3-642-40020-9_32
title (primary) (eng) Generalized minimizers of convex integral functionals and Pythagorean identities
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0398425
ISBN 978-3-642-40019-3
ISSN 0302-9743
title Geometric Science of Information 2013
page_num 302-307
publisher
place Berlin
name Springer
year 2013
keyword Integral functional
keyword convex normal integrand
keyword primal constraint qualification
keyword generalized minimizer
keyword Pythagorean identities
keyword information geometry
author (primary)
ARLID cav_un_auth*0015571
name1 Csiszár
name2 I.
country HU
author
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/MTR/http://library.utia.cas.cz/separaty/2013/MTR/matus-0397249.pdf
cas_special
abstract (eng) Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The effective domain of the value function is described by a modification of the concept of convex core. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The minimizers and generalized minimizers are explicitly described whenever the primal value is finite, assuming a dual constraint qualification but not the primal constraint qualification. A generalized Pythagorean identity is presented using Bregman distance and a correction term.
action
ARLID cav_un_auth*0294821
name Geometric Science of Information 2013
place Paris
dates 28.08.2013-30.08.2013
country FR
reportyear 2014
RIV BD
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0225900
mrcbT16-q 100
mrcbT16-s 0.325
mrcbT16-y 16.75
mrcbT16-x 0.51
mrcbT16-4 Q2
mrcbT16-E Q3
arlyear 2013
mrcbU63 cav_un_epca*0398425 Geometric Science of Information 2013 978-3-642-40019-3 0302-9743 302 307 Berlin Springer 2013 Lecture Notes in Computer Science 8085