bibtype J - Journal Article
ARLID 0398772
utime 20240111140837.2
mtime 20131121235959.9
WOS 000327909800008
SCOPUS 84887321339
DOI 10.1016/j.jfranklin.2013.05.021
title (primary) (eng) On stabilisability of 2-D MIMO shift-invariant systems
specification
page_count 18 s.
media_type E
serial
ARLID cav_un_epca*0253779
ISSN 0016-0032
title Journal of the Franklin Institute-Engineering and Applied Mathematics
volume_id 350
volume 10 (2013)
page_num 2949-2966
publisher
name Elsevier
keyword spatially invariant system
keyword stabilisation
keyword multiple-input-multiple-output system,
keyword positive polynomial
author (primary)
ARLID cav_un_auth*0213204
name1 Augusta
name2 Petr
full_dept (cz) Teorie řízení
full_dept (eng) Department of Control Theory
department (cz)
department (eng) TR
institution UTIA-B
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0259382
name1 Augustová
name2 Petra
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
institution UTIA-B
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový dokument
url http://library.utia.cas.cz/separaty/2013/TR/augusta-0398772.pdf
url http://dx.doi.org/10.1016/j.jfranklin.2013.05.021
source_size 1,03 MB
cas_special
project
project_id GPP103/12/P494
agency GA ČR
ARLID cav_un_auth*0284930
abstract (eng) We concentrate on the linear spatially distributed time-invariant two-dimensional systems with multiple inputs and multiple outputs and with control action based on an array of sensors and actuators connected to the system. The system is described by the bivariate matrix polynomial fraction. Stabilisation of such systems is based on the relationship between stability of a bivariate polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are not linear in the controller parameters, however, in simple cases, a linearising factorisation exists. It allows to describe the control design in the form of a linear matrix inequality. In more complicated cases, linear sufficient conditions are given. This concept is applied to a system with multiple outputs—a heat conduction in a long thin metal rod equipped with an array of temperature sensors and heaters, where heaters are placed in larger distances than sensors.
reportyear 2014
RIV BC
num_of_auth 2
mrcbC52 4 A 4a 20231122135917.7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0226296
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC|ENGINEERINGMULTIDISCIPLINARY|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS
mrcbT16-f 2.396
mrcbT16-g 0.254
mrcbT16-h 4.IV
mrcbT16-i 0.00595
mrcbT16-j 0.576
mrcbT16-k 2546
mrcbT16-l 197
mrcbT16-s 1.046
mrcbT16-z ScienceCitationIndexExpanded
mrcbT16-4 Q1
mrcbT16-B 54.215
mrcbT16-C 84.584
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2013
mrcbTft \nSoubory v repozitáři: augusta-0398772.pdf
mrcbU14 84887321339 SCOPUS
mrcbU34 000327909800008 WOS
mrcbU56 textový dokument 1,03 MB
mrcbU63 cav_un_epca*0253779 Journal of the Franklin Institute-Engineering and Applied Mathematics 0016-0032 1879-2693 Roč. 350 č. 10 2013 2949 2966 Elsevier