bibtype |
J -
Journal Article
|
ARLID |
0398772 |
utime |
20240111140837.2 |
mtime |
20131121235959.9 |
WOS |
000327909800008 |
SCOPUS |
84887321339 |
DOI |
10.1016/j.jfranklin.2013.05.021 |
title
(primary) (eng) |
On stabilisability of 2-D MIMO shift-invariant systems |
specification |
page_count |
18 s. |
media_type |
E |
|
serial |
ARLID |
cav_un_epca*0253779 |
ISSN |
0016-0032 |
title
|
Journal of the Franklin Institute-Engineering and Applied Mathematics |
volume_id |
350 |
volume |
10 (2013) |
page_num |
2949-2966 |
publisher |
|
|
keyword |
spatially invariant system |
keyword |
stabilisation |
keyword |
multiple-input-multiple-output system, |
keyword |
positive polynomial |
author
(primary) |
ARLID |
cav_un_auth*0213204 |
name1 |
Augusta |
name2 |
Petr |
full_dept (cz) |
Teorie řízení |
full_dept (eng) |
Department of Control Theory |
department (cz) |
TŘ |
department (eng) |
TR |
institution |
UTIA-B |
full_dept |
Department of Control Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0259382 |
name1 |
Augustová |
name2 |
Petra |
full_dept (cz) |
Teorie řízení |
full_dept |
Department of Control Theory |
department (cz) |
TŘ |
department |
TR |
institution |
UTIA-B |
full_dept |
Department of Control Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GPP103/12/P494 |
agency |
GA ČR |
ARLID |
cav_un_auth*0284930 |
|
abstract
(eng) |
We concentrate on the linear spatially distributed time-invariant two-dimensional systems with multiple inputs and multiple outputs and with control action based on an array of sensors and actuators connected to the system. The system is described by the bivariate matrix polynomial fraction. Stabilisation of such systems is based on the relationship between stability of a bivariate polynomial and positiveness of a related polynomial matrix on the unit circle. Such matrices are not linear in the controller parameters, however, in simple cases, a linearising factorisation exists. It allows to describe the control design in the form of a linear matrix inequality. In more complicated cases, linear sufficient conditions are given. This concept is applied to a system with multiple outputs—a heat conduction in a long thin metal rod equipped with an array of temperature sensors and heaters, where heaters are placed in larger distances than sensors. |
reportyear |
2014 |
RIV |
BC |
num_of_auth |
2 |
mrcbC52 |
4 A 4a 20231122135917.7 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0226296 |
mrcbT16-e |
AUTOMATIONCONTROLSYSTEMS|ENGINEERINGELECTRICALELECTRONIC|ENGINEERINGMULTIDISCIPLINARY|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS |
mrcbT16-f |
2.396 |
mrcbT16-g |
0.254 |
mrcbT16-h |
4.IV |
mrcbT16-i |
0.00595 |
mrcbT16-j |
0.576 |
mrcbT16-k |
2546 |
mrcbT16-l |
197 |
mrcbT16-s |
1.046 |
mrcbT16-z |
ScienceCitationIndexExpanded |
mrcbT16-4 |
Q1 |
mrcbT16-B |
54.215 |
mrcbT16-C |
84.584 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q2 |
arlyear |
2013 |
mrcbTft |
\nSoubory v repozitáři: augusta-0398772.pdf |
mrcbU14 |
84887321339 SCOPUS |
mrcbU34 |
000327909800008 WOS |
mrcbU56 |
textový dokument 1,03 MB |
mrcbU63 |
cav_un_epca*0253779 Journal of the Franklin Institute-Engineering and Applied Mathematics 0016-0032 1879-2693 Roč. 350 č. 10 2013 2949 2966 Elsevier |
|