bibtype C - Conference Paper (international conference)
ARLID 0399130
utime 20240103203310.1
mtime 20140304235959.9
SCOPUS 84894653353
WOS 000343477100029
DOI 10.3233/978-1-61499-330-8-275
title (primary) (eng) Probabilistic Inference in BN2T Models by Weighted Model Counting
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0399129
ISBN 978-1-61499-329-2
title Proceedings of the Twelfth Scandinavian Conference on Artificial Intelligence
page_num 275-284
publisher
place Amsterdam
name IOS Press
year 2013
editor
name1 Jaeger
name2 Manfred
editor
name1 Nielsen
name2 Thomas Dyhre
editor
name1 Viappiani
name2 Paolo
keyword Bayesian networks
keyword Models of Independence of causal influence
keyword Noisy threshold models
keyword Probabilistic inference
keyword Weighted model counting
keyword Arithmetic circuits
author (primary)
ARLID cav_un_auth*0101228
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
name1 Vomlel
name2 Jiří
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
name1 Tichavský
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2013/MTR/vomlel-0399130.pdf
cas_special
project
ARLID cav_un_auth*0292670
project_id GA13-20012S
agency GA ČR
project
ARLID cav_un_auth*0253174
project_id GA102/09/1278
agency GA ČR
abstract (eng) Exact inference in Bayesian networks with nodes having a large parent set is not tractable using standard techniques as are the junction tree method or the variable elimination. However, in many applications, the conditional probability tbles of these nodes have certain local structure than can be exploited to make the exact inference tractable. In this paper we combine the CP tensor decomposition of probability tables with probabilistic inference using weighted model counting. The motivation for this combination is to exploit not only the local structure of some conditional probability tables but also other structural information potentialy present in the Baysian network, like determinism or context specific independence. We illustrate the proposed combination on BN2T networks -- two-layered Bayesian networks with conditional probability tables representing noisy threshold models.
action
ARLID cav_un_auth*0301481
name The Scandinavian Conference on Artificial Intelligence (SCAI 2013) /12./
dates 20.11.2013-22.11.2013
place Aalborg
country DK
RIV JD
reportyear 2014
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0228479
confidential S
arlyear 2013
mrcbU14 84894653353 SCOPUS
mrcbU34 000343477100029 WOS
mrcbU63 cav_un_epca*0399129 Proceedings of the Twelfth Scandinavian Conference on Artificial Intelligence 978-1-61499-329-2 275 284 Amsterdam IOS Press 2013 Frontiers in Artificial Intelligence and Applications
mrcbU67 Jaeger Manfred 340
mrcbU67 Nielsen Thomas Dyhre 340
mrcbU67 Viappiani Paolo 340