bibtype C - Conference Paper (international conference)
ARLID 0399659
utime 20240111140838.2
mtime 20131203235959.9
SCOPUS 84893168382
DOI 10.1007/978-3-642-41822-8_36
title (primary) (eng) On Stopping Rules in Dependency-Aware Feature Ranking
specification
page_count 8 s.
media_type C
serial
ARLID cav_un_epca*0399658
ISBN 978-3-642-41821-1
title Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
page_num 286-293
publisher
place Heidelberg
name Springer
year 2013
keyword dimensionality reduction
keyword feature selection
keyword randomization and stopping rule
author (primary)
ARLID cav_un_auth*0101197
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
name1 Somol
name2 Petr
institution UTIA-B
garant G
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101091
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
name1 Grim
name2 Jiří
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101086
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
name1 Filip
name2 Jiří
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021092
name1 Pudil
name2 P.
country CZ
source
source_type hypertextový soubor (PDF)
url http://library.utia.cas.cz/separaty/2013/RO/somol-0399659.pdf
source_size 2 MB
cas_special
project
ARLID cav_un_auth*0273627
project_id GAP103/11/0335
agency GA ČR
abstract (eng) Feature Selection in very-high-dimensional or small sample problems is particularly prone to computational and robustness complications. It is common to resort to feature ranking approaches only or to randomization techniques. A recent novel approach to the randomization idea in form of Dependency-Aware Feature Ranking (DAF) has shown great potential in tackling these problems well. Its original definition, however, leaves several technical questions open. In this paper we address one of these questions: how to define stopping rules of the randomized computation that stands at the core of the DAF method. We define stopping rules that are easier to interpret and show that the number of randomly generated probes does not need to be extensive.
action
ARLID cav_un_auth*0296973
name CIARP 2013, Iberoamerican Congress on Pattern Recognition /18./
dates 20.11.2013-23.11.2013
place Havana
country CU
RIV BD
reportyear 2014
num_of_auth 4
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0226952
cooperation
ARLID cav_un_auth*0295073
name Vysoká škola ekonomická v Praze
institution VŠE
country CZ
mrcbC63-f Praha 3
arlyear 2013
mrcbU14 84893168382 SCOPUS
mrcbU56 hypertextový soubor (PDF) 2 MB
mrcbU63 cav_un_epca*0399658 Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications 978-3-642-41821-1 286 293 Heidelberg Springer 2013 Lecture Notes in Computer Science 8258