bibtype J - Journal Article
ARLID 0399907
utime 20240111140838.4
mtime 20131218235959.9
WOS 000325824900025
SCOPUS 84886290240
DOI 10.1007/s11071-013-1007-4
title (primary) (eng) Difference map and its electronic circuit realization
specification
page_count 12 s.
media_type E
serial
ARLID cav_un_epca*0254525
ISSN 0924-090X
title Nonlinear Dynamics
volume_id 74
volume 3 (2013)
page_num 819-830
keyword Chaotic behavior
keyword Lyapunov exponent
keyword Bifurcation parameter
keyword Bifurcation diagram
keyword Stability analysis
author (primary)
ARLID cav_un_auth*0297166
name1 García-Martínez
name2 M.
country MX
author
ARLID cav_un_auth*0297167
name1 Campos-Cantón
name2 I.
country MX
author
ARLID cav_un_auth*0295508
name1 Campos-Cantón
name2 E.
country MX
author
ARLID cav_un_auth*0101074
name1 Čelikovský
name2 Sergej
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
institution UTIA-B
full_dept Department of Control Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový dokument
url http://library.utia.cas.cz/separaty/2013/TR/celikovsky-0399907.pdf
url http://link.springer.com/article/10.1007/s11071-013-1007-4
source_size 811 KB
cas_special
project
project_id GA13-20433S
agency GA ČR
ARLID cav_un_auth*0292613
abstract (eng) In this paper we study the dynamical behavior of the one-dimensional discrete-time system, the so-called iterated map. Namely, a bimodal quadratic map is introduced which is obtained as an amplification of the difference between well-known logistic and tent maps. Thus, it is denoted as the so-called difference map. The difference map exhibits a variety of behaviors according to the selection of the bifurcation parameter. The corresponding bifurcations are studied by numerical simulations and experimentally. The stability of the difference map is studied by means of Lyapunov exponent and is proved to be chaotic according to Devaney’s definition of chaos. Later on, a design of the electronic implementation of the difference map is presented. The difference map electronic circuit is built using operational amplifiers, resistors and an analog multiplier. It turns out that this electronic circuit presents fixed points, periodicity, chaos and intermittency that match with high accuracy to the corresponding values predicted theoretically.
reportyear 2014
RIV BC
num_of_auth 4
mrcbC52 4 A 4a 20231122135941.9
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0227921
mrcbT16-e ENGINEERINGMECHANICAL|MECHANICS
mrcbT16-f 2.424
mrcbT16-g 0.482
mrcbT16-h 3.IX
mrcbT16-i 0.01284
mrcbT16-j 0.553
mrcbT16-k 5603
mrcbT16-l 407
mrcbT16-s 1.203
mrcbT16-4 Q1
mrcbT16-B 40.264
mrcbT16-C 90.559
mrcbT16-D Q3
mrcbT16-E Q1
arlyear 2013
mrcbTft \nSoubory v repozitáři: celikovsky-0399907.pdf
mrcbU14 84886290240 SCOPUS
mrcbU34 000325824900025 WOS
mrcbU56 textový dokument 811 KB
mrcbU63 cav_un_epca*0254525 Nonlinear Dynamics 0924-090X 1573-269X Roč. 74 č. 3 2013 819 830