bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0410297 |
utime |
20240103182204.4 |
mtime |
20060210235959.9 |
ISBN |
0-7803-5253-X |
title
(primary) (eng) |
Computer algebra design of continuous stabilizers for singular triangular systems |
publisher |
place |
Phoenix |
name |
IEEE Control Systems Society |
pub_time |
1999 |
|
specification |
|
serial |
title
|
Proceedings of the 38th Conference on Decision & Control. CDC '99 |
page_num |
1629-1634 |
|
author
(primary) |
ARLID |
cav_un_auth*0212305 |
name1 |
Aranda-Bricaire |
name2 |
E. |
country |
MX |
|
author
|
ARLID |
cav_un_auth*0101074 |
name1 |
Čelikovský |
name2 |
Sergej |
institution |
UTIA-B |
full_dept |
Department of Control Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0212631 |
name1 |
Navarro-Yah |
name2 |
H. D. |
country |
MX |
|
COSATI |
09I |
cas_special |
project |
project_id |
GA102/99/1368 |
agency |
GA ČR |
ARLID |
cav_un_auth*0004439 |
|
project |
project_id |
26356-A |
agency |
CONACyT Mexico |
country |
MX |
|
research |
AV0Z1075907 |
abstract
(eng) |
The problem of stabilization of the so-called singular triangular system is considered. In particular, such a system may have nonstabilizable approximate linearization, therefore, only a nonsmooth stabilizing feedback may exist. The paper suggests constructive procedure to obtain such a feedback for any triangular form system and presents a MAPLE code using computer algebra to compute the feedback. Results are tested via simulations of the selected case studies. |
action |
ARLID |
cav_un_auth*0212601 |
name |
CDC '99 /38./ |
place |
Phoenix |
country |
US |
dates |
07.12.1999-10.12.1999 |
|
RIV |
BC |
department |
TŘ |
permalink |
http://hdl.handle.net/11104/0130388 |
ID_orig |
UTIA-B 20000013 |
arlyear |
1999 |
mrcbU10 |
1999 |
mrcbU10 |
Phoenix IEEE Control Systems Society |
mrcbU12 |
0-7803-5253-X |
mrcbU63 |
Proceedings of the 38th Conference on Decision & Control. CDC '99 1629 1634 |
|