project |
project_id |
IAA2075703 |
agency |
GA AV |
country |
CZ |
ARLID |
cav_un_auth*0218731 |
|
project |
project_id |
VS96063 |
agency |
MŠMT |
country |
CZ |
ARLID |
cav_un_auth*0025066 |
|
project |
project_id |
KSK1075601 |
agency |
GA AV |
country |
CZ |
ARLID |
cav_un_auth*0027435 |
|
research |
AV0Z1075907 |
abstract
(eng) |
The self-organizing map (SOM) algorithm for training of artificial neural networks is shown to be closely related to a sequential modification of EM algorithm for maximum-likelihood estimation of finite mixtures. Theestablished correspondence provides a helpful theoretical basis for interpretation of the properties of SOM algorithm and for the choice of involved parameters. |
RIV |
BB |
department |
RO |
permalink |
http://hdl.handle.net/11104/0003514 |
ID_orig |
UTIA-B 20000047 |
arlyear |
2000 |
mrcbU63 |
cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 10 č. 3 2000 407 415 Ústav informatiky AV ČR, v. v. i. |