bibtype J - Journal Article
ARLID 0410331
utime 20240903170411.9
mtime 20060210235959.9
title (primary) (eng) Self-organizing maps and probabilistic neural networks
specification
page_count 9 s.
serial
ARLID cav_un_epca*0290321
ISSN 1210-0552
title Neural Network World
volume_id 10
volume 3 (2000)
page_num 407-415
publisher
name Ústav informatiky AV ČR, v. v. i.
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 09K
COSATI 12B
cas_special
project
project_id IAA2075703
agency GA AV
country CZ
ARLID cav_un_auth*0218731
project
project_id VS96063
agency MŠMT
country CZ
ARLID cav_un_auth*0025066
project
project_id KSK1075601
agency GA AV
country CZ
ARLID cav_un_auth*0027435
research AV0Z1075907
abstract (eng) The self-organizing map (SOM) algorithm for training of artificial neural networks is shown to be closely related to a sequential modification of EM algorithm for maximum-likelihood estimation of finite mixtures. Theestablished correspondence provides a helpful theoretical basis for interpretation of the properties of SOM algorithm and for the choice of involved parameters.
RIV BB
department RO
permalink http://hdl.handle.net/11104/0003514
ID_orig UTIA-B 20000047
arlyear 2000
mrcbU63 cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 10 č. 3 2000 407 415 Ústav informatiky AV ČR, v. v. i.