| project |
| project_id |
IAA2075703 |
| agency |
GA AV |
| country |
CZ |
| ARLID |
cav_un_auth*0218731 |
|
| project |
| project_id |
VS96063 |
| agency |
MŠMT |
| country |
CZ |
| ARLID |
cav_un_auth*0025066 |
|
| project |
| project_id |
KSK1075601 |
| agency |
GA AV |
| country |
CZ |
| ARLID |
cav_un_auth*0027435 |
|
| research |
AV0Z1075907 |
| abstract
(eng) |
The self-organizing map (SOM) algorithm for training of artificial neural networks is shown to be closely related to a sequential modification of EM algorithm for maximum-likelihood estimation of finite mixtures. Theestablished correspondence provides a helpful theoretical basis for interpretation of the properties of SOM algorithm and for the choice of involved parameters. |
| RIV |
BB |
| department |
RO |
| permalink |
http://hdl.handle.net/11104/0003514 |
| ID_orig |
UTIA-B 20000047 |
| arlyear |
2000 |
| mrcbU63 |
cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 10 č. 3 2000 407 415 Ústav informatiky AV ČR, v. v. i. |