bibtype C - Conference Paper (international conference)
ARLID 0410332
utime 20240103182206.6
mtime 20060210235959.9
ISBN 3-540-67704-6
title (primary) (eng) Combining multiple classifiers in probabilistic neural networks
publisher
place Berlin
name Springer
pub_time 2000
specification
page_count 10 s.
edition
name Lecture Notes in Computer Science.
volume_id 1857
serial
title Multiple Classifier Systems
page_num 157-166
editor
name1 Kittler
name2 J.
editor
name1 Roli
name2 F.
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021087
name1 Kittler
name2 J.
country GB
author
ARLID cav_un_auth*0101182
name1 Pudil
name2 Pavel
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 12B
COSATI 09K
cas_special
project
project_id IAA2075703
agency GA AV
country CZ
ARLID cav_un_auth*0218731
project
project_id VS96063
agency MŠMT
country CZ
ARLID cav_un_auth*0025066
project
project_id KSK1075601
agency GA AV
country CZ
ARLID cav_un_auth*0027435
research AV0Z1075907
abstract (eng) The paper summarizes main features of a new probabilistic approach to neural networks in the framework of statistical pattern recognition. Assuming approximation of class-conditional distributions by finite mixtures we identify formal neurons with the components of finite mixtures and therefore the EM algorithm can be used to optimize the parameters of neurons. In order to prevent the arising information loss we propose a parallel use of the output variables to design the Bayesian classifier.
action
ARLID cav_un_auth*0212643
name First International Workshop MCS 2000
place Cagliari
country IT
dates 21.06.2000-23.06.2000
RIV BB
department RO
permalink http://hdl.handle.net/11104/0130422
ID_orig UTIA-B 20000048
arlyear 2000
mrcbU10 2000
mrcbU10 Berlin Springer
mrcbU12 3-540-67704-6
mrcbU63 Multiple Classifier Systems 157 166
mrcbU67 Kittler J. 340
mrcbU67 Roli F. 340