bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0410369 |
utime |
20240111140635.6 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
D-stability of polynomial matrices |
publisher |
place |
Cambridge |
name |
University of Cambridge |
pub_time |
2000 |
|
specification |
|
serial |
title
|
UKACC International Conference on CONTROL 2000. Proceedings |
|
author
(primary) |
ARLID |
cav_un_auth*0015534 |
name1 |
Henrion |
name2 |
D. |
country |
FR |
|
author
|
ARLID |
cav_un_auth*0212659 |
name1 |
Bachelier |
name2 |
O. |
country |
FR |
|
author
|
ARLID |
cav_un_auth*0101204 |
name1 |
Šebek |
name2 |
Michael |
institution |
UTIA-B |
full_dept |
Department of Control Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
COSATI |
09I |
cas_special |
project |
project_id |
GA102/99/1368 |
agency |
GA ČR |
ARLID |
cav_un_auth*0004439 |
|
project |
project_id |
VS97034 |
agency |
MŠMT |
country |
CZ |
ARLID |
cav_un_auth*0025111 |
|
research |
AV0Z1075907 |
abstract
(eng) |
Necessary and sufficient conditions are formulated for the zeros of an arbitrary polynomial matrix to belong to a given region D of the complex plane. The conditions stem from a general optimization methodology mixing quadratic and semidefinite programming, LFRs and rank-one LMIs. They are expressed as an LMI feasibility problem that can be tackled with widespread powerful interior-point methods. |
action |
ARLID |
cav_un_auth*0212660 |
name |
UKACC International Conference on CONTROL 2000 |
place |
Cambridge |
country |
GB |
dates |
04.09.2000-07.09.2000 |
|
RIV |
BC |
department |
TŘ |
permalink |
http://hdl.handle.net/11104/0130458 |
ID_orig |
UTIA-B 20000085 |
arlyear |
2000 |
mrcbU10 |
2000 |
mrcbU10 |
Cambridge University of Cambridge |
mrcbU56 |
235 kB |
mrcbU63 |
UKACC International Conference on CONTROL 2000. Proceedings |
|