bibtype J - Journal Article
ARLID 0410431
utime 20240103182213.6
mtime 20060210235959.9
title (primary) (eng) Road sing classification using Laplace kernel classifier
specification
page_count 9 s.
serial
ARLID cav_un_epca*0257389
ISSN 0167-8655
title Pattern Recognition Letters
volume_id 21
page_num 1165-1173
publisher
name Elsevier
author (primary)
ARLID cav_un_auth*0101174
name1 Paclík
name2 Pavel
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101171
name1 Novovičová
name2 Jana
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101182
name1 Pudil
name2 Pavel
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 12B
COSATI 09K
cas_special
project
project_id VS96063
agency MŠMT
country CZ
ARLID cav_un_auth*0025066
project
project_id IAA2075608
agency GA AV
country CZ
ARLID cav_un_auth*0012931
project
project_id IAA2075606
agency GA AV
country CZ
ARLID cav_un_auth*0012930
research AV0Z1075907
abstract (eng) The Laplace kernel rule for the road sign classification based on a priori information about road signs grouping has been developed. The smoothing parameters of the Laplace kernel are optimized by the pseudo-likelihood cross-validation method using the Expectation-Maximization algorithm. The new classification algorithm has been successfully tested on more than 1100 images of 43 road sign types. The comparison with the Bayes classifier assuming the Gaussian mixtures has been made.
RIV BB
department RO
permalink http://hdl.handle.net/11104/0130520
ID_orig UTIA-B 20000147
arlyear 2000
mrcbU63 cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 21 13/14 2000 1165 1173 Elsevier