bibtype J - Journal Article
ARLID 0410494
utime 20240103182218.0
mtime 20060210235959.9
title (primary) (eng) Forecasting the short-term demand for electricity. Do neural networks stand a better chance?
specification
page_count 13 s.
serial
ARLID cav_un_epca*0251006
ISSN 0169-2070
title International Journal of Forecasting
volume_id 16
volume 1 (2000)
page_num 71-83
publisher
name Elsevier
author (primary)
ARLID cav_un_auth*0101078
name1 Darbellay
name2 Georges A.
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0100826
name1 Sláma
name2 Marek
institution UIVT-O
fullinstit Ústav informatiky AV ČR, v. v. i.
COSATI 12B
cas_special
project
project_id GA102/95/1311
agency GA ČR
ARLID cav_un_auth*0004300
research AV0Z1075907
abstract (eng) We address a problem faced by every supplier of electricity, i.e. forecasting the short-term electricity consumption. The introduction of new techniques has often been justifed by invoking the nonlinearity of the problem. First, we introduce a nonlinear measure of statistical dependence. Second, we analyse the linear and the nonlinear autocorrelation functions of the Czech electric comsumption. Third, we compare the predictions of nonlinear models with linear models.
RIV BB
department SI
permalink http://hdl.handle.net/11104/0130583
ID_orig UTIA-B 20000210
arlyear 2000
mrcbU63 cav_un_epca*0251006 International Journal of Forecasting 0169-2070 1872-8200 Roč. 16 č. 1 2000 71 83 Elsevier