| bibtype |
J -
Journal Article
|
| ARLID |
0410515 |
| utime |
20240103182219.5 |
| mtime |
20060210235959.9 |
| title
(primary) (eng) |
Direct method for parabolic problems |
| specification |
|
| serial |
| title
|
Advances in Mathematical Sciences and Applications |
| volume_id |
10 |
| volume |
99 (2000) |
| page_num |
57-65 |
|
| author
(primary) |
| ARLID |
cav_un_auth*0101187 |
| name1 |
Roubíček |
| name2 |
Tomáš |
| institution |
UTIA-B |
| full_dept |
Department of Decision Making Theory |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| COSATI |
12A |
| cas_special |
| research |
AV0Z1075907 |
| abstract
(eng) |
The variational principle by Brezis, Ekeland and Nayroles can characterize solutions to Cauchy or periodic problems for nonlinear parabolic equations or inequalities having a convex potential. Here, existence and uniqueness of solutions to such problems is shown by a direct method using this principle. |
| RIV |
BA |
| department |
MTR |
| permalink |
http://hdl.handle.net/11104/0130604 |
| ID_orig |
UTIA-B 20000231 |
| arlyear |
2000 |
| mrcbU63 |
Advances in Mathematical Sciences and Applications Roč. 10 č. 99 2000 57 65 |
|