bibtype |
J -
Journal Article
|
ARLID |
0410517 |
utime |
20240103182219.6 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
Nonexistence of solutions in nonconvex multidimensional variational problems |
specification |
|
serial |
ARLID |
cav_un_epca*0257905 |
ISSN |
0944-6532 |
title
|
Journal of Convex Analysis |
volume_id |
7 |
volume |
99 (2000) |
page_num |
427-436 |
publisher |
|
|
author
(primary) |
ARLID |
cav_un_auth*0101187 |
name1 |
Roubíček |
name2 |
Tomáš |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0045841 |
name1 |
Šverák |
name2 |
V. |
country |
US |
|
COSATI |
12A |
cas_special |
research |
AV0Z1075907 |
abstract
(eng) |
In the scalar n-dimensional situation, the extreme points in the set of certain gradient Lp-Young measures are studied. For n=1, such Young measures must be composed from Diracs, while for n>1 there are non-Dirac extreme points among them, for n>2, some are even weakly* continuous. This is used to construct nontrivial examples of nonexistence of solutions of the minimization-type variational problems. |
RIV |
BA |
department |
MTR |
permalink |
http://hdl.handle.net/11104/0130606 |
ID_orig |
UTIA-B 20000233 |
arlyear |
2000 |
mrcbU63 |
cav_un_epca*0257905 Journal of Convex Analysis 0944-6532 0944-6532 Roč. 7 č. 99 2000 427 436 Heldermann Verlag |
|