| bibtype |
C -
Conference Paper (international conference)
|
| ARLID |
0410525 |
| utime |
20240103182220.2 |
| mtime |
20060210235959.9 |
| title
(primary) (eng) |
Control of linear systems subject to input constraints: a polynomial approach |
| publisher |
| place |
Illinois |
| name |
AACC |
| pub_time |
2000 |
|
| specification |
|
| serial |
| title
|
Proceedings of the American Control Conference |
| page_num |
1-27 |
|
| author
(primary) |
| ARLID |
cav_un_auth*0101104 |
| name1 |
Henrion |
| name2 |
Didier |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0021093 |
| name1 |
Tarbouriech |
| name2 |
S. |
| country |
FR |
|
| author
|
| ARLID |
cav_un_auth*0101144 |
| name1 |
Kučera |
| name2 |
Vladimír |
| institution |
UTIA-B |
| full_dept |
Department of Control Theory |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| COSATI |
09I |
| cas_special |
| project |
| project_id |
GA102/99/1368 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0004439 |
|
| research |
AV0Z1075907 |
| abstract
(eng) |
A polynomial approach is pursued for locally stabilizing discrete-time linear systems subject to input constraints. Using the Youla-Kucera parametrization and geometric properties of polyhedra and ellipsoids, the problem of simultaneously deriving a stabilizing controller and the corresponding stability region is cast into standard convex optimization problems solved by linear, second-order cone and semidefinite programming. |
| action |
| ARLID |
cav_un_auth*0212737 |
| name |
American Control Conference 2000 |
| place |
Illinois |
| country |
US |
| dates |
28.06.2000-30.06.2000 |
|
| RIV |
BC |
| department |
TŘ |
| permalink |
http://hdl.handle.net/11104/0130614 |
| ID_orig |
UTIA-B 20000241 |
| arlyear |
2000 |
| mrcbU10 |
2000 |
| mrcbU10 |
Illinois AACC |
| mrcbU63 |
Proceedings of the American Control Conference 1 27 |
|