| bibtype |
C -
Conference Paper (international conference)
|
| ARLID |
0410528 |
| utime |
20240103182220.4 |
| mtime |
20060210235959.9 |
| title
(primary) (eng) |
D-stability of polynomial matrices |
| publisher |
| place |
Cambridge |
| name |
Cambridge University |
| pub_time |
2000 |
|
| specification |
|
| serial |
| title
|
Proceedings of the Control 2000 Conference |
| page_num |
1-24 |
|
| keyword |
polynomial matrix |
| keyword |
D-stability |
| keyword |
LMI |
| author
(primary) |
| ARLID |
cav_un_auth*0101104 |
| name1 |
Henrion |
| name2 |
Didier |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0212659 |
| name1 |
Bachelier |
| name2 |
O. |
| country |
FR |
|
| author
|
| ARLID |
cav_un_auth*0021057 |
| name1 |
Šebek |
| name2 |
M. |
| country |
CZ |
|
| COSATI |
09I |
| cas_special |
| project |
| project_id |
GA102/99/1368 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0004439 |
|
| research |
AV0Z1075907 |
| abstract
(eng) |
Necessary and sufficient conditions are formulated for the zeros of an arbitrary polynomial matrix to belong to a given D of the complex plane. The conditions stem from a general optimization methodology mixing quadratic and semidefinite programming, LFRs and rank-one LMIs. They are expressed as an LMI feasibility problem that can be tackled with widespread powerful interior-point methods. |
| action |
| ARLID |
cav_un_auth*0212742 |
| name |
Control 2000 Conference UKACC |
| place |
Cambridge |
| country |
GB |
| dates |
07.09.2000-11.09.2000 |
|
| RIV |
BC |
| department |
TŘ |
| permalink |
http://hdl.handle.net/11104/0130617 |
| ID_orig |
UTIA-B 20000244 |
| arlyear |
2000 |
| mrcbU10 |
2000 |
| mrcbU10 |
Cambridge Cambridge University |
| mrcbU63 |
Proceedings of the Control 2000 Conference 1 24 |
|