bibtype J - Journal Article
ARLID 0410604
utime 20240103182225.9
mtime 20060210235959.9
title (primary) (eng) Convex cores of measures on R
specification
page_count 14 s.
serial
ARLID cav_un_epca*0255737
ISSN 0081-6906
title Studia Scientiarum Mathematicarum Hungarica
volume_id 38
volume 2 (2001)
page_num 177-190
publisher
name Akadémiai Kiadó
keyword convex support
keyword convex sets in n-dimensions
keyword lattice of faces
author (primary)
ARLID cav_un_auth*0015571
name1 Csiszár
name2 I.
country HU
author
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 12A
cas_special
project
project_id IAA1075801
agency GA AV ČR
ARLID cav_un_auth*0012795
research AV0Z1075907
abstract (eng) We define the convex core of a finite Borel measure Q on R
mrcbC15-d as the intersection of all convex Borel sets C with Q(C)=Q(R
mrcbC15-d ). It consists exactly of means of probability measures dominated by Q. Geometric and measure-theoretic properties of convex cores are studied, including behaviour under certain operations on measures. Convex cores are characterized as those convex sets that have at most countable number of faces.
RIV BA
department MTR
permalink http://hdl.handle.net/11104/0130693
ID_orig UTIA-B 20010073
arlyear 2001
mrcbU63 cav_un_epca*0255737 Studia Scientiarum Mathematicarum Hungarica 0081-6906 1588-2896 Roč. 38 č. 2 2001 177 190 Akadémiai Kiadó