bibtype |
J -
Journal Article
|
ARLID |
0410604 |
utime |
20240103182225.9 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
Convex cores of measures on R |
specification |
|
serial |
ARLID |
cav_un_epca*0255737 |
ISSN |
0081-6906 |
title
|
Studia Scientiarum Mathematicarum Hungarica |
volume_id |
38 |
volume |
2 (2001) |
page_num |
177-190 |
publisher |
|
|
keyword |
convex support |
keyword |
convex sets in n-dimensions |
keyword |
lattice of faces |
author
(primary) |
ARLID |
cav_un_auth*0015571 |
name1 |
Csiszár |
name2 |
I. |
country |
HU |
|
author
|
ARLID |
cav_un_auth*0101161 |
name1 |
Matúš |
name2 |
František |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
COSATI |
12A |
cas_special |
project |
project_id |
IAA1075801 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0012795 |
|
research |
AV0Z1075907 |
abstract
(eng) |
We define the convex core of a finite Borel measure Q on R |
mrcbC15-d |
as the intersection of all convex Borel sets C with Q(C)=Q(R |
mrcbC15-d |
). It consists exactly of means of probability measures dominated by Q. Geometric and measure-theoretic properties of convex cores are studied, including behaviour under certain operations on measures. Convex cores are characterized as those convex sets that have at most countable number of faces. |
RIV |
BA |
department |
MTR |
permalink |
http://hdl.handle.net/11104/0130693 |
ID_orig |
UTIA-B 20010073 |
arlyear |
2001 |
mrcbU63 |
cav_un_epca*0255737 Studia Scientiarum Mathematicarum Hungarica 0081-6906 1588-2896 Roč. 38 č. 2 2001 177 190 Akadémiai Kiadó |
|