bibtype J - Journal Article
ARLID 0410608
utime 20240103182226.2
mtime 20060210235959.9
title (primary) (eng) Rank-one LMIs and Lyapunov's inequality
specification
page_count 4 s.
serial
ARLID cav_un_epca*0256721
ISSN 0018-9286
title IEEE Transactions on Automatic Control
volume_id 46
volume 8 (2001)
page_num 1285-1288
publisher
name Institute of Electrical and Electronics Engineers
keyword linear matrix inequalities (LMIs)
keyword linear systems
keyword optimization
author (primary)
ARLID cav_un_auth*0101104
name1 Henrion
name2 Didier
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0202348
name1 Meinsma
name2 G.
country NL
COSATI 09I
cas_special
research AV0Z1075907
abstract (eng) We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix in some region of the complex plane. The proof makes use of standard facts from quadratic and semidefinite programming. Links are established between the Lyapunov matrix, rank-one linear matrix inequalities (LMIs), and the Lagrange multiplier arising in duality theory.
RIV BC
department
permalink http://hdl.handle.net/11104/0130697
ID_orig UTIA-B 20010077
arlyear 2001
mrcbU63 cav_un_epca*0256721 IEEE Transactions on Automatic Control 0018-9286 1558-2523 Roč. 46 č. 8 2001 1285 1288 Institute of Electrical and Electronics Engineers