bibtype |
J -
Journal Article
|
ARLID |
0410608 |
utime |
20240103182226.2 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
Rank-one LMIs and Lyapunov's inequality |
specification |
|
serial |
ARLID |
cav_un_epca*0256721 |
ISSN |
0018-9286 |
title
|
IEEE Transactions on Automatic Control |
volume_id |
46 |
volume |
8 (2001) |
page_num |
1285-1288 |
publisher |
name |
Institute of Electrical and Electronics Engineers |
|
|
keyword |
linear matrix inequalities (LMIs) |
keyword |
linear systems |
keyword |
optimization |
author
(primary) |
ARLID |
cav_un_auth*0101104 |
name1 |
Henrion |
name2 |
Didier |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0202348 |
name1 |
Meinsma |
name2 |
G. |
country |
NL |
|
COSATI |
09I |
cas_special |
research |
AV0Z1075907 |
abstract
(eng) |
We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix in some region of the complex plane. The proof makes use of standard facts from quadratic and semidefinite programming. Links are established between the Lyapunov matrix, rank-one linear matrix inequalities (LMIs), and the Lagrange multiplier arising in duality theory. |
RIV |
BC |
department |
TŘ |
permalink |
http://hdl.handle.net/11104/0130697 |
ID_orig |
UTIA-B 20010077 |
arlyear |
2001 |
mrcbU63 |
cav_un_epca*0256721 IEEE Transactions on Automatic Control 0018-9286 1558-2523 Roč. 46 č. 8 2001 1285 1288 Institute of Electrical and Electronics Engineers |
|