| bibtype |
J -
Journal Article
|
| ARLID |
0410608 |
| utime |
20240103182226.2 |
| mtime |
20060210235959.9 |
| title
(primary) (eng) |
Rank-one LMIs and Lyapunov's inequality |
| specification |
|
| serial |
| ARLID |
cav_un_epca*0256721 |
| ISSN |
0018-9286 |
| title
|
IEEE Transactions on Automatic Control |
| volume_id |
46 |
| volume |
8 (2001) |
| page_num |
1285-1288 |
| publisher |
| name |
Institute of Electrical and Electronics Engineers |
|
|
| keyword |
linear matrix inequalities (LMIs) |
| keyword |
linear systems |
| keyword |
optimization |
| author
(primary) |
| ARLID |
cav_un_auth*0101104 |
| name1 |
Henrion |
| name2 |
Didier |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0202348 |
| name1 |
Meinsma |
| name2 |
G. |
| country |
NL |
|
| COSATI |
09I |
| cas_special |
| research |
AV0Z1075907 |
| abstract
(eng) |
We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix in some region of the complex plane. The proof makes use of standard facts from quadratic and semidefinite programming. Links are established between the Lyapunov matrix, rank-one linear matrix inequalities (LMIs), and the Lagrange multiplier arising in duality theory. |
| RIV |
BC |
| department |
TŘ |
| permalink |
http://hdl.handle.net/11104/0130697 |
| ID_orig |
UTIA-B 20010077 |
| arlyear |
2001 |
| mrcbU63 |
cav_un_epca*0256721 IEEE Transactions on Automatic Control 0018-9286 1558-2523 Roč. 46 č. 8 2001 1285 1288 Institute of Electrical and Electronics Engineers |
|