bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0410628 |
utime |
20240103182227.6 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
On prior information in principal component analysis |
publisher |
place |
Maynooth |
name |
NUI Maynooth |
pub_time |
2001 |
|
specification |
|
serial |
title
|
Irish Signals and Systems Conference 2001. Proceedings |
page_num |
129-134 |
editor |
|
editor |
|
editor |
|
|
keyword |
PCA |
keyword |
prior information |
keyword |
dynamic medical imaging |
author
(primary) |
ARLID |
cav_un_auth*0101207 |
name1 |
Šmídl |
name2 |
Václav |
institution |
UTIA-B |
full_dept |
Department of Adaptive Systems |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101124 |
name1 |
Kárný |
name2 |
Miroslav |
institution |
UTIA-B |
full_dept |
Department of Adaptive Systems |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0021112 |
name1 |
Quinn |
name2 |
A. |
country |
IE |
|
source |
|
COSATI |
06Y |
cas_special |
project |
project_id |
GA102/99/1564 |
agency |
GA ČR |
ARLID |
cav_un_auth*0004444 |
|
research |
AV0Z1075907 |
abstract
(eng) |
Principal component analysis is well developed and understood method of multivariate data processing. Performance of PCA depends on the amount and characteristics of the noise in the observed data. In this paper we show how the use of a Bazesian approach, and especially prior information, improves its performance. |
action |
ARLID |
cav_un_auth*0212808 |
name |
Irish Signals and Systems Conference 2001 |
place |
Maynooth |
country |
IE |
dates |
25.06.2001-27.06.2001 |
|
RIV |
BB |
department |
AS |
permalink |
http://hdl.handle.net/11104/0130717 |
ID_orig |
UTIA-B 20010097 |
arlyear |
2001 |
mrcbU10 |
2001 |
mrcbU10 |
Maynooth NUI Maynooth |
mrcbU63 |
Irish Signals and Systems Conference 2001. Proceedings 129 134 |
mrcbU67 |
Shorten R. 340 |
mrcbU67 |
Ward T. 340 |
mrcbU67 |
Lysaght T. 340 |
|