bibtype J - Journal Article
ARLID 0410647
utime 20240103182229.0
mtime 20060210235959.9
title (primary) (eng) Minimum divergence estimators based on grouped data
specification
page_count 12 s.
serial
ARLID cav_un_epca*0250791
ISSN 0020-3157
title Annals of the Institute of Statistical Mathematics
volume_id 53
volume 2 (2001)
page_num 277-288
keyword minimum divergence estimators
keyword random quantization
keyword asymptotic normality
author (primary)
ARLID cav_un_auth*0212088
name1 Menéndez
name2 M. L.
country ES
author
ARLID cav_un_auth*0015540
name1 Morales
name2 D.
country ES
author
ARLID cav_un_auth*0021073
name1 Pardo
name2 L.
country ES
author
ARLID cav_un_auth*0101218
name1 Vajda
name2 Igor
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 12B
cas_special
project
project_id GA102/99/1137
agency GA ČR
ARLID cav_un_auth*0004432
research AV0Z1075907
abstract (eng) It is shown that an optimal grouping of data (quantification) leads to a negligible inefficiency in continuous parametric models. Robust estimators achieving the negligible inefficiency are introduced and their asymptotic theory is established.
RIV BB
department SI
permalink http://hdl.handle.net/11104/0130735
ID_orig UTIA-B 20010116
arlyear 2001
mrcbU63 cav_un_epca*0250791 Annals of the Institute of Statistical Mathematics 0020-3157 1572-9052 Roč. 53 č. 2 2001 277 288