bibtype |
J -
Journal Article
|
ARLID |
0410647 |
utime |
20240103182229.0 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
Minimum divergence estimators based on grouped data |
specification |
|
serial |
ARLID |
cav_un_epca*0250791 |
ISSN |
0020-3157 |
title
|
Annals of the Institute of Statistical Mathematics |
volume_id |
53 |
volume |
2 (2001) |
page_num |
277-288 |
|
keyword |
minimum divergence estimators |
keyword |
random quantization |
keyword |
asymptotic normality |
author
(primary) |
ARLID |
cav_un_auth*0212088 |
name1 |
Menéndez |
name2 |
M. L. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0015540 |
name1 |
Morales |
name2 |
D. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0021073 |
name1 |
Pardo |
name2 |
L. |
country |
ES |
|
author
|
ARLID |
cav_un_auth*0101218 |
name1 |
Vajda |
name2 |
Igor |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
COSATI |
12B |
cas_special |
project |
project_id |
GA102/99/1137 |
agency |
GA ČR |
ARLID |
cav_un_auth*0004432 |
|
research |
AV0Z1075907 |
abstract
(eng) |
It is shown that an optimal grouping of data (quantification) leads to a negligible inefficiency in continuous parametric models. Robust estimators achieving the negligible inefficiency are introduced and their asymptotic theory is established. |
RIV |
BB |
department |
SI |
permalink |
http://hdl.handle.net/11104/0130735 |
ID_orig |
UTIA-B 20010116 |
arlyear |
2001 |
mrcbU63 |
cav_un_epca*0250791 Annals of the Institute of Statistical Mathematics 0020-3157 1572-9052 Roč. 53 č. 2 2001 277 288 |
|