bibtype |
J -
Journal Article
|
ARLID |
0410719 |
utime |
20240103182234.3 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
Buoyancy-driven viscous flow with L |
mrcb200-1 |
-data |
specification |
|
serial |
ARLID |
cav_un_epca*0257331 |
ISSN |
0362-546X |
title
|
Nonlinear Analysis: Theory, Methods & Applications |
volume_id |
46 |
volume |
99 (2001) |
page_num |
737-755 |
publisher |
|
|
keyword |
non-Newtonean fluids |
keyword |
heat equation |
keyword |
dissipative heat |
author
(primary) |
ARLID |
cav_un_auth*0065418 |
name1 |
Nečas |
name2 |
J. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0101187 |
name1 |
Roubíček |
name2 |
Tomáš |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
COSATI |
12A |
cas_special |
project |
project_id |
IAA1075707 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0012793 |
|
research |
AV0Z1075907 |
abstract
(eng) |
System of equation for incompressible non-Newtonean (of the p-power type) viscous flow coupled with the heat equation is considered with heat sources allowed to have a natural L |
mrcbC15-1 |
-structure and, in some cases, even to be measures. The existence of a distributional solution is shown by a fixed-point technique for arbitrarily large data if p is greater than the spatial dimension, i.e. in a shear thickening case, and globally in time if adiabatic-heat effects dominate the dissipative heat. |
RIV |
BA |
department |
MTR |
permalink |
http://hdl.handle.net/11104/0130807 |
ID_orig |
UTIA-B 20010188 |
arlyear |
2001 |
mrcbU63 |
cav_un_epca*0257331 Nonlinear Analysis: Theory, Methods & Applications 0362-546X 1873-5215 Roč. 46 č. 99 2001 737 755 Elsevier |
|