| bibtype |
J -
Journal Article
|
| ARLID |
0410750 |
| utime |
20250807152151.3 |
| mtime |
20060210235959.9 |
| title
(primary) (eng) |
Young measure approximation in micromagnetics |
| specification |
|
| serial |
| ARLID |
cav_un_epca*0257346 |
| ISSN |
0029-599X |
| title
|
Numerische Mathematik |
| volume_id |
90 |
| volume |
2 (2001) |
| page_num |
291-307 |
| publisher |
|
|
| keyword |
active set strategy |
| keyword |
adaptive scheme |
| keyword |
Young measures |
| author
(primary) |
| ARLID |
cav_un_auth*0101142 |
| name1 |
Kružík |
| name2 |
Martin |
| institution |
UTIA-B |
| full_dept |
Department of Decision Making Theory |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0212864 |
| name1 |
Prohl |
| name2 |
A. |
| country |
DE |
|
| COSATI |
12A |
| COSATI |
12C |
| cas_special |
| project |
| project_id |
IAA1075707 |
| agency |
GA AV ČR |
| ARLID |
cav_un_auth*0012793 |
|
| research |
AV0Z1075907 |
| abstract
(eng) |
Modeling of micromagnetic phenomena typically faces the minimization of a non-convex problem, which gives rise to highly oscillatory magnetization structures. Mathematically, this necessitates to extend the notion of Lebesgue-type solutions to Young-measure valued solutions. The present work proposes and analyzes a conforming finite element method that is based on an active set strategy to efficiently compute discrete solutions of the generalized problem. |
| RIV |
BA |
| department |
MTR |
| permalink |
http://hdl.handle.net/11104/0130838 |
| ID_orig |
UTIA-B 20010219 |
| arlyear |
2001 |
| mrcbU63 |
cav_un_epca*0257346 Numerische Mathematik 0029-599X 0945-3245 Roč. 90 č. 2 2001 291 307 Springer |
|