bibtype |
J -
Journal Article
|
ARLID |
0410765 |
utime |
20240103182237.6 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
D-stability of polynomial matrices |
specification |
|
serial |
ARLID |
cav_un_epca*0256786 |
ISSN |
0020-7179 |
title
|
International Journal of Control |
volume_id |
74 |
volume |
8 (2001) |
page_num |
845-856 |
publisher |
|
|
keyword |
polynomial methods |
keyword |
robust control |
keyword |
linear matrix inequalities |
author
(primary) |
ARLID |
cav_un_auth*0101104 |
name1 |
Henrion |
name2 |
Didier |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0212659 |
name1 |
Bachelier |
name2 |
O. |
country |
FR |
|
author
|
ARLID |
cav_un_auth*0021057 |
name1 |
Šebek |
name2 |
M. |
country |
CZ |
|
COSATI |
09I |
cas_special |
project |
project_id |
KSK1019101 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0000219 |
|
research |
AV0Z1075907 |
abstract
(eng) |
Necessary and sufficient conditions are formulated for the zeros of an arbitrary polynomial matrix to belong to a given region D of the complex plane. The conditons stem from a general optimization methodology mixing quadratic and semidefinite programming, LFRs and rank-one LMIs. They are expressed as an LMI feasibility problem that can be tackled with widespread powerful interior-point methods. |
RIV |
BC |
department |
TŘ |
permalink |
http://hdl.handle.net/11104/0130853 |
ID_orig |
UTIA-B 20010234 |
arlyear |
2001 |
mrcbU63 |
cav_un_epca*0256786 International Journal of Control 0020-7179 1366-5820 Roč. 74 č. 8 2001 845 856 Taylor & Francis |
|