bibtype C - Conference Paper (international conference)
ARLID 0410767
utime 20240103182237.7
mtime 20060210235959.9
title (primary) (eng) Linear matrix inequalities for robust strictly positive real design
publisher
place Toulouse
name ECMMS
pub_time 2001
specification
page_count 11 s.
serial
title Proceedings of the Workshop on Electronics, Control, Modelling, Measurement and Signals
page_num 1-11
keyword strictly positive real
keyword polynomial
keyword linear matrix inequalities
author (primary)
ARLID cav_un_auth*0101104
name1 Henrion
name2 Didier
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 09I
cas_special
project
project_id KSK1019101
agency GA AV ČR
ARLID cav_un_auth*0000219
research AV0Z1075907
abstract (eng) A necessary and sufficient condition is proposed for existence of a polynomial p(s)/q(s)is robustly strictly positive real when q(s) is given Hurwitz polynomial with polytopic uncertainty. It turns out that the whole set of candidates p(s) is a convex subset of the cone of positive semidefinite matrices, resulting in a straightforward strictly positive real design algorithm based on linear inequalities.
action
ARLID cav_un_auth*0212873
name Workshop on Electronics, Control, Modelling, Measurement and Signals
place Toulouse
country FR
dates 30.05.2001-01.06.2001
RIV BC
department
permalink http://hdl.handle.net/11104/0130855
ID_orig UTIA-B 20010236
arlyear 2001
mrcbU10 2001
mrcbU10 Toulouse ECMMS
mrcbU63 Proceedings of the Workshop on Electronics, Control, Modelling, Measurement and Signals 1 11